## Quadrupole excitations in selfconjugate nuclei pushing the limit

Francesco Recchia, Jeongsu Ha
University and INFN Padova
and the e19034 Collaboration

#### Physics Motivation

- ▶ N = Z nuclei play a special role
  - (np) collectivity by the interplay of neutron-proton
  - spatial overlap of their respective wave functions at the Fermi surface
  - proton and neutrons act coherently.
- Competing isoscalar np pairing and normal isovector (T = 1, I = 0) pairing modes
  - ▶ a nuclear superfluid **analogous to "Cooper Pairs"** may exists in nuclei
  - Isoscalar predicted prominent in the ground states of heavier (A > 76) N = Z nuclei
  - ▶ Difficult to find a smoking gun signature
  - ▶ shell-model predict that isoscalar pairing enhances collectivity → measurements of B(E2)

- Along N = Z: shape change from oblate (64Ge, 68Se) to prolate around 72Kr
- Large deformation continues up to 80Zr
- ▶ Then prolate or oblate??
- ▶ Shell model predictions for <sup>84</sup>Mo:
- with **fpg** model space: oblate,  $\tau(2_1^+) = 75$  ps
- with **fpgd** model space: prolate,  $\tau(2_1^+) = 43$  ps



R. D. O. Llewellyn et al., Phys. Rev. Lett. **124**, 152501 (2020)



## Objectives

- Measurement of the lifetime of the first 2\* state in 84Mo populated by two-neutron knockout from 86Mo.
- Measurement of the lifetime of the first 2+ state in 86Mo using inelastic scattering: 86Mo (9Be, 9Be)86Mo\*
- Understanding the collectivity, shape, of <sup>86</sup>Mo and <sup>84</sup>Mo by comparing to the shell model calculation

Focal

Plane

#### Experiment at NSCL, Michigan

Performed in July 2020 Lifetime measurement for the low-lying states in <sup>84</sup>Mo and its vicinity GRETINA HPGe array



# Experimental (e19034@NSCL, MSU)

- GRETINA was coupled to the plunger TRIple Plunger for EXotic beams (TRIPLEX)
- With a secondary target, the <u>TRIPLEX plunger</u> can hold up to two degrader foils which facilitate to extract the lifetime from a single measurement
- Only one degrader was employed in the experiment







#### Incoming PID

[Selection of the incoming beam]



OBJ - E1 Time of flight (arb

#### Analysis

[Outgoing beam PID plot for incoming 86Mo beam]



## Comparison to full Monte Carlo

- The spatial and energy distribution of the secondary beam are reproduced in the **simulation**
- Strong direct population to 2+
  - Residual population to 4<sup>+</sup> states that decays by a fast transition

# $B(E2; 2_1^+ \to 0_1^+) \text{ along N=Z}$



- First 2+ state in 84Mo understandable in terms of prolate deformation
- Inclusion of d<sub>5/2</sub> is needed lifetime shorter than expected quadrupole correlations

Francesco Recchia – University of Padova

#### Discussion with ZBM3

- □ The shell model calculation with ZBM3 (r3gds model space)
- The  $B(E2; 2_1^+ \rightarrow 0_1^+)$  calculation shows consistency for N = Z and N = Z + 2 nuclides





A. P. Zuker, A. Poves, F. Nowacki, and S. M. Lenzi, Phys. Rev. C 92, 024320 (2015) A. P. Zuker, B. Buck, and J. B. McGrory, Phys. Rev. Lett. 21, 39 (1968)

#### Discussion with ZBM3

- $\square$  The  $eta-\gamma$  plane for  $^{84}$ Mo and  $^{86}$ Mo show triaxial ground-state shapes
- □ Soft potential surface towards oblate shapes for both <sup>84</sup>Mo and <sup>86</sup>Mo



Francesco Recchia – University of Padova

#### Conclusion

- Advanced RIB Facilities and instrumentation allow progress
  - ► Measure collectivity by B(E2) along N=Z
  - New challenges for theoretical description of the B(E2) measured in the center of the  $g_{9/2}$  shell
  - Quadrupole correlations beyond expectations; possible triaxiality... calculation still in progress
- Limit of present facilities is reached. Looking forward for the new ones
  - odd-odd nuclides (82Nb, 86Tc, ...) shape competition and coexistence.





ONLY POSSIBLE THANKS TO:

Jeongsu Ha Pablo Aguilera Sara Carollo







THE FULL NSCL COLLABORATION IS ACKNOWLEDGED