Variations on Nuclear Shapes

Alfredo Poves Department of Theoretical Physics and IFT, UAM-CSIC, Madrid

European Nuclear Physics Conference Santiago de Compostela, October 2022 In collaboration with F. Nowacki, Y. Alhassid, S. M. Lenzi, and K. Sieja

Outline

- The Quadrupole Interaction: Shapes
- Nuclear Shape; Meaning and Limitations
- Shape coexistence in ⁶⁸Ni and ⁷⁸Ni: K-plots
- Nuclear Shapes at the LHC?

Nuclear Shapes

- To speak of the shape of a quantal system it is necessary to define an intrinsic reference frame, hence the rotational (and reflection) invariances must be broken. In addition, we usually rely on semiclassical models, liquid-drop like, to describe properties akin to the concept of shape.
- The surface of a drop can be expressed in the basis of the spherical harmonics $Y_{\lambda,\mu}(\theta,\phi)$. The coefficients of the development, $\alpha_{\lambda,\mu}$, are the shape parameters.

Nuclear Shapes

• To characterise the quadrupole shapes in the intrinsic frame two parameters are used β and γ , and a large variety of recipes exist to relate them to the laboratory frame observables

Quadrupole Invariants

- The only rigorous method to relate the intrinsic parameters to laboratory-frame observables is provided by the so-called quadrupole invariants Qⁿ of the second-rank quadrupole operator Q₂ introduced by Kumar.
- The calculation of β and γ requires the knowledge of the expectation values of the second- and third-order invariants defined, respectively, by $\hat{Q}^2 = \hat{Q} \cdot \hat{Q}$ and $\hat{Q}^3 = (\hat{Q} \times \hat{Q}) \cdot \hat{Q}$ (where $\hat{Q} \times \hat{Q}$ is the coupling of \hat{Q} with itself to a second-rank operator).

Fluctuations

Indeed, it is not very meaningful to assign effective (average) values to β and γ without also studying their fluctuations. Our aim is to go beyond the extraction of effective values of these intrinsic parameters and obtain their variances.

With this goal, we calculate:

$$\sigma(\hat{Q}^2) = (\langle \hat{Q}^4 \rangle - \langle \hat{Q}^2 \rangle^2)^{1/2} \tag{1}$$

and

$$\sigma(\hat{Q}^3) = (\langle \hat{Q}^6 \rangle - \langle \hat{Q}^3 \rangle^2)^{1/2} . \tag{2}$$

Higher-order invariants

- The choice of the fourth-order invariant \hat{Q}^4 is unique and we take it as $\hat{Q}^4 = (\hat{Q}^2)^2 = (\hat{Q} \cdot \hat{Q})^2$.
- The fifth-order invariant is also unique and we take it as $\hat{Q}^5 = \hat{Q}^2 \; \hat{Q}^3 = (\hat{Q} \cdot \hat{Q})([\hat{Q} \times \hat{Q}] \cdot \hat{Q}])$.
- The sixth order invariant is not unique. There are two choices but the adequate one to use in Eq. (2) is $\hat{Q}^6 = (\hat{Q}^3)^2 = ([\hat{Q} \times \hat{Q}] \cdot \hat{Q}])^2$.

We have been able to compute them using the Lanczos Projected Strength Function Method. See

A. Poves, F. Nowacki, and Y. Alhassid, Phys. Rev. C 101, 054307 (2020), for the details.

The intrinsic quadrupole moment Q_0 and the effective (average) values of the Bohr-Mottelson shape parameters β and γ can be calculated from the expectation values of the second- and third-order invariants using

$$Q_0 = \sqrt{\frac{16\pi}{5}} \langle \hat{Q}^2 \rangle^{1/2} , \qquad (3)$$

$$\beta = \frac{4\pi}{3r_0^2} \frac{\langle \hat{Q}^2 \rangle^{1/2}}{A^{5/3}} \,, \tag{4}$$

with $r_0=1.2$ fm, and

$$\cos 3\gamma = -\sqrt{\frac{7}{2}} \frac{\langle \hat{Q}^3 \rangle}{\langle \hat{Q}^2 \rangle^{3/2}} \tag{5}$$

Fluctuations in β and γ

$$\frac{\Delta\beta}{\beta} = \frac{1}{2} \frac{\sigma\langle \hat{Q}^2 \rangle}{\langle \hat{Q}^2 \rangle} \ . \tag{6}$$

$$\frac{\sigma^2(\cos 3\gamma)}{(\overline{\cos 3\gamma})^2} = \frac{\sigma^2\langle \hat{Q}^3 \rangle}{\langle \hat{Q}^3 \rangle^2} + \frac{9}{4} \frac{\sigma^2\langle \hat{Q}^2 \rangle}{\langle \hat{Q}^2 \rangle^2} - 3 \frac{\langle \hat{Q}^5 \rangle - \langle \hat{Q}^3 \rangle \langle \hat{Q}^2 \rangle}{\langle \hat{Q}^3 \rangle \langle \hat{Q}^2 \rangle} \ . \tag{7}$$

Notice that the covariance term in (7) requires the knowledge of $\langle \hat{Q}^5 \rangle$. The range of γ values at 1σ is given by

$$\cos^{-1}(\cos 3\gamma \pm \sigma(\cos 3\gamma)) \tag{8}$$

Miscellaneous results

	β	Δβ	$rac{\sigma \langle \hat{Q}^2 angle}{\langle \hat{Q}^2 angle}$	γ	γ range
²⁰ Ne	0.62	0.07	0.24	3 °	0° — 9°
²⁴ Mg	0.60	0.07	0.25	18°	12° — 22°
⁴⁸ Cr	0.31	0.06	0.41	13°	0° — 20°
³⁴ Si	0.18	0.10	1.07	40 °	0° — 60°
0_{2}^{+}	0.42	80.0	0.37	40 °	30 ° — 60 °
⁶⁸ Ni	0.11	0.06	1.10	36°	0° – 60°
0_{2}^{+}	0.19	0.05	0.55	38 °	23 ° − 60°
0 ₂ + 0 ₃ +	0.29	0.05	0.36	16°	0 ° – 24 °
⁶⁴ Cr	0.29	0.06	0.35	16°	0° − 24 °

Do the intrinsic shape parameters β and γ survive in the laboratory frame?

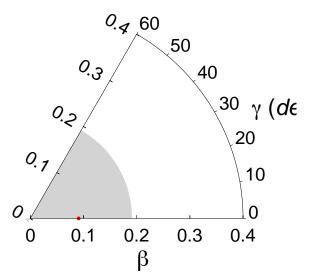
- β : yes although nuclei are most often β -soft
- γ : rather not. The fluctuations in γ amount to 20°- 30°. In some cases the oblate or prolate character survives. In others, both sectors of the β - γ sextant are equally probable
- β and γ only have small fluctuations when the nucleus approaches the SU3 limit. And, probably, in heavier well deformed nuclei too.

A bit of semantics: Are doubly magic nuclei spherical?

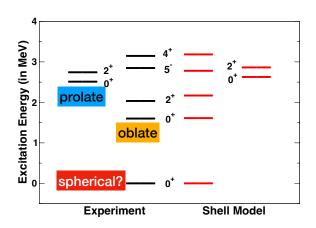
- Doubly magic nuclei are NOT spherical, they have NO shape, because $\frac{\sigma\langle\hat{Q}^2\rangle}{\langle\hat{Q}^2\rangle}\approx$ 1, and the span of γ is close to 60°
- Hence, there are NO spherical nuclei at all as seen below
- 56 Ni β = 0.21 \pm 0.07 γ = 40.5 $^{\circ}$ span 13 $^{\circ}$ 60 $^{\circ}$
- ⁴⁸Ca β = 0.15 \pm 0.05 γ = 33° span 0° 60°
- Discomforting isn't it?

The K-plots are a representation in the (β, γ) sextant of the locus of their variances.

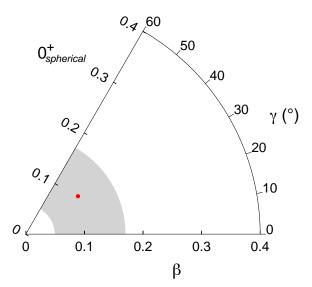
Doubly magic ⁴⁰Ca



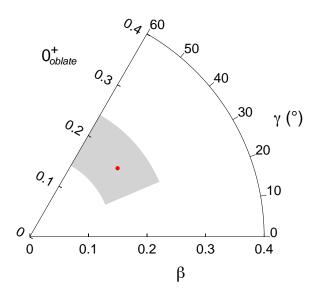
Shape Coexistence in ⁶⁸Ni



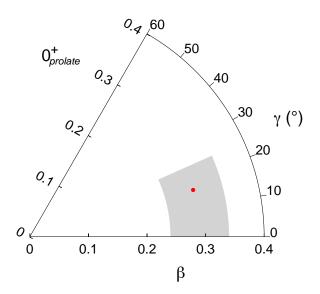
Is the closed-shell ground state spherical?



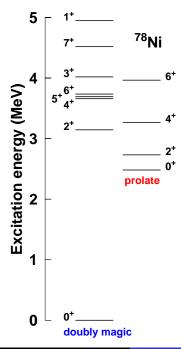
⁶⁸Ni



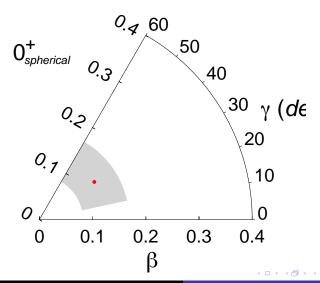
⁶⁸Ni



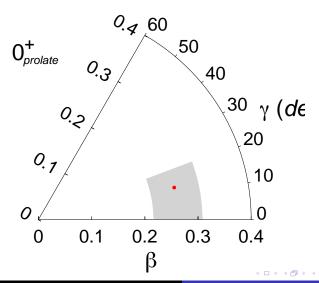
⁷⁸Ni



⁷⁸Ni, the doubly magic ground state



⁷⁸Ni, the coexisting deformed 0⁺



How affect these fluctuations our established ideas about shape evolution and shape coexistence?

- Shape evolution: The shape of the nuclei changes along isotopic or isotonic chains.
- Shape coexistence: Different states of the same nucleus have different shapes.
- But, how to interpret the cases in which the different 1σ contours in the β - γ plane have large overlaps?
- Food for thought

What can tell us the high energy heavy ion collisions, at RHIC or at LHC, about the nuclear shapes?

- In several recent papers it is argued that these experiments can inform us abut the deformation and the triaxiality of the colliding nuclei.
- B. Bally talk. See also the Atlas collaboration paper, arXiv-2205.00039, where they compare the ²⁰⁸Pb-²⁰⁸Pb and the ¹²⁹Xe-¹²⁹Xe results.
- They submit that two of their experimentally extracted parameters are related to β and γ as:

$$v_2^2 \approx a + b \beta^2$$
 and $\rho^2 \approx a' + b' \cos(3\gamma) \beta^3$

where a and a' are the values in the spherical case

- The Atlas paper concludes that
- Comparison of the model with the Pb+Pb and Xe+Xe data confirms that the ¹²⁹Xe nucleus is a highly deformed triaxial ellipsoid that has neither a prolate nor oblate shape. This provides strong evidence for a triaxial deformation of the ¹²⁹Xe nucleus from high-energy heavy-ion collisions.
- We have computed the variances of β and γ in ¹³⁰Xe, which is an excellent proxy. We perform SM-Cl calculations in a large valence space, with the GCN5082 effective interaction, which reproduce nicely the spectroscopy of the Xenon isotopes from A=128 to A=136, and its electromagnetic properties.

- In the NNDC database one finds:
- 128 Xe, B(E2) (2 $^+$ o 0 $^+$) = 48(11) WU
- 130 Xe, B(E2) (2 $^+$ o 0 $^+$) = 38(5) WU
- Corresponding to β_{ch} = 0.20±0.03
- and β_{ch} = 0.18±0.02, respectively
- using the standard BM recipe.

- Our calculation gives:
- 130 Xe, β_{ch} = 0.17 from the B(E2), with the BM prescription.
- Using the Kumar invariants, and for the mass deformation we get:
- $\beta_m = 0.14 \pm 0.02$
- γ =26°, with an interval at one σ (13° 37°)
- from $cos3\gamma$ =0.21 and $\sigma(cos3\gamma)$ =0.57

 Remember that the formula used by the Atlas coll, reads

$$v_2^2 \approx a + b \beta^2$$
 and $\rho^2 \approx a' + b'\cos(3\gamma)\beta^3$

- How to make sense of this given that $cos3\gamma$ =0.21±0.57?
- By the way, $\beta^2 = 0.020 \pm 0.006$.
- and $\beta^3 = 0.0027 \pm 0.0012$

Whereof one cannot speak, thereof one must be silent

L. Wittgenstein, Tractatus logico-philosophicus, Proposition 7, Routledge and Kegan Paul eds., London (1922).

Rigid triaxiality in ⁷⁶Se and ⁷⁶Ge?

- Shell Model Calculations in the r3g space with the jj44b interaction and standard effective charges
- 76 Ge: $\beta = 0.17 \pm 0.02$ and $\gamma = (26^{+9}_{-9})^{\circ}$
- 76 Se: $\beta = 0.20 \pm 0.03$ and γ = (31 $^{+17}_{-16}$) $^{\circ}$
- Shell Model Calculations in the LNPS space and standard effective charges
- 76 Ge: $\beta = 0.25 \pm 0.03$ and $\gamma = (28^{+8}_{-10})^{\circ}$

⁷⁶**Ge**

