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Nuclear Shapes
To speak of the shape of a quantal system it is
necessary to define an intrinsic reference frame,
hence the rotational (and reflection) invariances must
be broken. In addition, we usually rely on
semiclassical models, liquid-drop like, to describe
properties akin to the concept of shape.
The surface of a drop can be expressed in the basis of
the spherical harmonics Y𝜆,𝜇(𝜃, 𝜑). The coefficients of
the development, 𝛼𝜆,𝜇, are the shape parameters.
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Nuclear Shapes
To characterise the quadrupole shapes in the intrinsic
frame two parameters are used 𝛽 and 𝛾, and a large
variety of recipes exist to relate them to the laboratory
frame observables
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Quadrupole Invariants
The only rigorous method to relate the intrinsic
parameters to laboratory-frame observables is
provided by the so-called quadrupole invariants Qn of
the second-rank quadrupole operator Q2 introduced
by Kumar.
The calculation of 𝛽 and 𝛾 requires the knowledge of
the expectation values of the second- and third-order
invariants defined, respectively, by Q̂2 = Q̂ · Q̂ and
Q̂3 = (Q̂ × Q̂) · Q̂ (where Q̂ × Q̂ is the coupling of Q̂
with itself to a second-rank operator).
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Fluctuations
Indeed, it is not very meaningful to assign effective
(average) values to 𝛽 and 𝛾 without also studying their
fluctuations. Our aim is to go beyond the extraction of
effective values of these intrinsic parameters and obtain
their variances.

With this goal, we calculate:

𝜎(Q̂2) = (⟨Q̂4⟩ − ⟨Q̂2⟩2)1/2 (1)

and
𝜎(Q̂3) = (⟨Q̂6⟩ − ⟨Q̂3⟩2)1/2 . (2)
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Higher-order invariants

The choice of the fourth-order invariant Q̂4 is unique
and we take it as Q̂4 = (Q̂2)2 = (Q̂ · Q̂)2.
The fifth-order invariant is also unique and we take it
as Q̂5 = Q̂2 Q̂3 = (Q̂ · Q̂)([Q̂ × Q̂] · Q̂]).
The sixth order invariant is not unique. There are two
choices but the adequate one to use in Eq. (2) is
Q̂6 = (Q̂3)2 = ([Q̂ × Q̂] · Q̂])2.
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We have been able to compute them using
the Lanczos Projected Strength Function
Method. See
A. Poves, F. Nowacki, and Y. Alhassid,
Phys. Rev. C 101, 054307 (2020),
for the details.
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The intrinsic quadrupole moment Q0 and the effective
(average) values of the Bohr-Mottelson shape parameters
𝛽 and 𝛾 can be calculated from the expectation values of
the second- and third-order invariants using

Q0 =

√︂
16𝜋

5
⟨Q̂2⟩1/2 , (3)

𝛽 =
4𝜋
3r2

0

⟨Q̂2⟩1/2

A5/3 , (4)

with r0=1.2 fm, and

cos 3𝛾 = −
√︂

7
2

⟨Q̂3⟩
⟨Q̂2⟩3/2

(5)
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Fluctuations in 𝛽 and 𝛾

∆𝛽

𝛽
=

1
2
𝜎⟨Q̂2⟩
⟨Q̂2⟩

. (6)

𝜎2(cos 3𝛾)

(cos 3𝛾)2
=

𝜎2⟨Q̂3⟩
⟨Q̂3⟩2

+
9
4
𝜎2⟨Q̂2⟩
⟨Q̂2⟩2

− 3
⟨Q̂5⟩ − ⟨Q̂3⟩⟨Q̂2⟩

⟨Q̂3⟩⟨Q̂2⟩
. (7)

Notice that the covariance term in (7) requires the
knowledge of ⟨Q̂5⟩. The range of 𝛾 values at 1𝜎 is given by

cos−1(cos 3𝛾 ± 𝜎(cos 3𝛾)) (8)

Alfredo Poves Variations on Nuclear Shapes



Miscellaneous results

𝛽 ∆𝛽 𝜎⟨Q̂2⟩
⟨Q̂2⟩

𝛾 𝛾 range

20Ne 0.62 0.07 0.24 3∘ 0∘ — 9∘

24Mg 0.60 0.07 0.25 18∘ 12∘ — 22∘

48Cr 0.31 0.06 0.41 13∘ 0∘ — 20∘

34Si 0.18 0.10 1.07 40∘ 0∘ — 60∘

0+
2 0.42 0.08 0.37 40∘ 30∘ — 60∘

68Ni 0.11 0.06 1.10 36∘ 0∘ – 60∘

0+
2 0.19 0.05 0.55 38∘ 23∘ – 60∘

0+
3 0.29 0.05 0.36 16∘ 0∘ – 24∘

64Cr 0.29 0.06 0.35 16∘ 0∘ – 24∘
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Do the intrinsic shape parameters 𝛽 and 𝛾 survive in
the laboratory frame?

𝛽: yes although nuclei are most often 𝛽-soft
𝛾: rather not. The fluctuations in 𝛾 amount to 20∘- 30∘.
In some cases the oblate or prolate character survives.
In others, both sectors of the 𝛽-𝛾 sextant are equally
probable
𝛽 and 𝛾 only have small fluctuations when the nucleus
approaches the SU3 limit. And, probably, in heavier
well deformed nuclei too.
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A bit of semantics: Are doubly magic nuclei
spherical?

Doubly magic nuclei are NOT spherical, they have NO
shape, because 𝜎⟨Q̂2⟩

⟨Q̂2⟩
≈ 1, and the span of 𝛾 is close to

60∘

Hence, there are NO spherical nuclei at all as seen
below
56Ni 𝛽 = 0.21± 0.07 𝛾= 40.5∘ span 13∘ – 60∘

48Ca 𝛽 = 0.15± 0.05 𝛾= 33∘ span 0∘ – 60∘

Discomforting isn’t it?
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The K-plots are a representation in the

(𝛽, 𝛾) sextant of the locus of their variances.
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Doubly magic 40Ca
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Shape Coexistence in 68Ni
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Is the closed-shell ground state spherical?

0+  spherical
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68Ni

0+  oblate

0

10

20

30

40

50

60

γ (°)

β

0 0.1 0.2 0.3 0.4
 

0

0.1

0.2

0.3

0.4

Alfredo Poves Variations on Nuclear Shapes



68Ni

0+  prolate
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78Ni
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78Ni, the doubly magic ground state
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78Ni, the coexisting deformed 0+
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How affect these fluctuations our established ideas
about shape evolution and shape coexistence?

Shape evolution: The shape of the nuclei changes
along isotopic or isotonic chains.
Shape coexistence: Different states of the same
nucleus have different shapes.
But, how to interpret the cases in which the different
1𝜎 contours in the 𝛽-𝛾 plane have large overlaps?
Food for thought
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What can tell us the high energy heavy ion collisions,
at RHIC or at LHC, about the nuclear shapes?

In several recent papers it is argued that these
experiments can inform us abut the deformation and
the triaxiality of the colliding nuclei.
B. Bally talk. See also the Atlas collaboration paper,
arXiv-2205.00039, where they compare the 208Pb-208Pb
and the 129Xe-129Xe results.
They submit that two of their experimentally extracted
parameters are related to 𝛽 and 𝛾 as:

v2
2 ≈ a + b 𝛽2 and 𝜌2 ≈ a′ + b′cos(3𝛾)𝛽3

where a and a′ are the values in the spherical case
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The Atlas paper concludes that
Comparison of the model with the Pb+Pb and Xe+Xe
data confirms that the 129Xe nucleus is a highly
deformed triaxial ellipsoid that has neither a prolate
nor oblate shape. This provides strong evidence for a
triaxial deformation of the 129Xe nucleus from
high-energy heavy-ion collisions.
We have computed the variances of 𝛽 and 𝛾 in 130Xe,
which is an excellent proxy. We perform SM-CI
calculations in a large valence space, with the
GCN5082 effective interaction, which reproduce nicely
the spectroscopy of the Xenon isotopes from A=128 to
A=136, and its electromagnetic properties.
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In the NNDC database one finds:
128Xe, B(E2) (2+ → 0+) = 48(11) WU
130Xe, B(E2) (2+ → 0+) = 38(5) WU
Corresponding to 𝛽ch= 0.20±0.03
and 𝛽ch= 0.18±0.02, respectively
using the standard BM recipe.
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Our calculation gives:
130Xe, 𝛽ch= 0.17 from the B(E2), with the BM
prescription.
Using the Kumar invariants, and for the mass
deformation we get:
𝛽m= 0.14±0.02
𝛾=26∘, with an interval at one 𝜎 (13∘ – 37∘)
from cos3𝛾=0.21 and 𝜎(cos3𝛾)=0.57
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Remember that the formula used by the Atlas coll,
reads

v2
2 ≈ a + b 𝛽2 and 𝜌2 ≈ a′ + b′cos(3𝛾)𝛽3

How to make sense of this given that
cos3𝛾=0.21±0.57?
By the way, 𝛽2=0.020±0.006.
and 𝛽3=0.0027±0.0012
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Whereof one cannot speak,
thereof one must be silent

L. Wittgenstein,
Tractatus logico-philosophicus, Proposition 7,
Routledge and Kegan Paul eds., London (1922).
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Rigid triaxiality in 76Se and 76Ge?
Shell Model Calculations in the r3g space with the
jj44b interaction and standard effective charges
76Ge: 𝛽 = 0.17 ± 0.02 and 𝛾 = (26+9

−9)∘

76Se: 𝛽 = 0.20 ± 0.03 and 𝛾 = (31+17
−16)∘

Shell Model Calculations in the LNPS space and
standard effective charges
76Ge: 𝛽 = 0.25 ± 0.03 and 𝛾 = (28+8

−10)∘
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76Ge
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76Se
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