

Physics results with the ultimate AGATA+MUGAST+VAMOS setup and ISOL beams at GANIL

Daniele Mengoni

Dip. Fisica e Astronomia, Università di Padova & INFN Padova

European Nuclear Physics Conference October 24-28, 2022 – Santiago de Compostela

Daniele Mengoni

MUGAST+AGATA @ GANIL

Outlook

Intro

- Technological leap
- Science campaign: highlights
- Conclusion

Why NS?

Complex many-body quantal systems, mesoscopic scale
 Hamiltonian eigenvalues from few eV to GeV: 9 orders!!!
 Comprehensive theory starting from "first principles"

W.Nazarevicz

AGATA+MUGAST+VAMOS setup

Daniele Mengoni

MUGAST+AGATA @ GANIL

Direct reactions [with ISOL RI beams]

Typically one/few nucleons exchange between the interacting nuclei

Selectivity :

Memory of initial state: single particle, np-nh, cluster

Sensitivity:

C.S. carries W.F. information

Specific state structure

Probe $\ll \Delta \Psi \gg$

adapted from A.Matta

Daniele Mengoni

Advances in γ -ray spectroscopy

ASNP&SFAIR meeting

Technological leap leading to γ -ray tracking

 $\sim \sigma_{\theta}$ (relatively fast moving ions)

Outstanding sensitivity for lifetime measurement **(~Ψ)** Reduced minimum detectable limit σ (~E) **E**, $\Psi \leftrightarrow \mathcal{H}$: Coherent description of nuclear many body complex system and nuclear matter

... but a price has to be payed ...

Daniele Mengoni

 ΔE_{γ}

MUGAST+AGATA @ GANIL

price to pay: complexity and cost

- 6660 high-resolution digital electronics channels
 High throughput DAQ / computational resources load
- Pulse Shape Analysis → position sensitive operation mode
- ■γ-ray tracking algorithms → maximum efficiency and P/T

Daniele Mengoni

AGATA+MUGAST+VAMOS set-up @ GANIL with Spiral1 beams

Unmatched worldwide performances and versatility for direct reactions

Science campaign and selected highlights

2019	UNBOUND STATES Above barrier narrow resonances in ¹⁵ F PhD : V. Alcindor I. Stefan (IJC lab), F. de Oliveira (GANIL) ¹⁴ O(p,p') with few 10 ⁵ pps	NUCLEAR ASTROPHYSICS. Determining the α+ ¹⁵ O radiative capture rate PhD : J. Sanchez Rojo C. Diget (York), N De Séréville (IJC lab) ¹⁵ O(⁷ Li,tγ) ¹⁹ Ne with 4. 10 ⁷ pps	SHELL STRUCTURE Is there a problem with protons in N=28 nucleus ⁴⁶ Ar ? A. Gottardo INFN, M. Assié IJCLab, D.M. UniPd PhD : D. Brugnara ⁴⁶ Ar(³ He,dγ) ⁴⁷ K with 4. 10 ⁴ pps HeCTOr Target
2020	SHELL STRUCTURE Lifetime measurements of 2 ₂ ⁺ and 3 ₁ ⁺ of ²⁰ O by direct nucleon transfer PhD : I. Zanon E. Clément (GANIL), A. Goasduf (INFN) ¹⁸ O(d,pγ) + DSAM	SHELL STRUCTURE Proton-neutron interactions across the N = 28 shell closure via ⁴⁷ K(d,p) ⁴⁸ K W. Catford (Surrey), A. Matta (LPC) ⁴⁷ K(d,pγ) ⁴⁸ K neutron transfer	 First time: α-transfer (stripping) at Ganil Lifetime measurement of states populated by transfer (³He,d) reaction
2021	SHELL STRUCTURE Proton-neutron interactions across the N = 28 shell closure via ⁴⁷ K(d,p) ⁴⁸ K W. Catford (Surrey), A. Matta (LPC) ⁴⁷ K(d,pγ) ⁴⁸ K neutron transfer	NUCLEAR ASTROPHYSICS Neutron capture at the δ5Kr s-process branching F. Recchia (INFN), S. Palmerini ⁸⁵ Kr(d,pγ) ⁸⁶ Kr with 10 ⁸ pps Approved in 2019, backlog	With radioactive ion beams

Daniele Mengoni

MUGAST+AGATA @ GANIL

Accreting neutron stars & X-ray bursts

Tension in former

measurements, large

the rate through the

- NS accreting matter from companion; Accreted H is burned to He; ignition of Hot-CNO cycle
- Breakout from Neutron star Hot-CNO
- Break out point: ¹⁵O(α, γ)¹⁹Ne

Daniele Mengoni

MUGAST+AGATA @ GANIL

Spokespers: C.Diget(York), N.De Séréville(IJCLab) Ph.D : J.Sanchez Rojo (York)

Pushing the limit of sensitivity

• $^{15}O(\alpha,\gamma)^{19}Ne \leftarrow ^{15}O(^{7}Li,t)^{19}Ne$

From: J.Sanchez Rojo PhD thesis

- Beam rate : ~10⁷pps and triple coincidence: γ +t+¹⁹Ne
- Minimum detection limit: cross-section few μb/sr
- New accurate results

Daniele Mengoni

The oxygen anomaly

Lifetime measurements of 2_2^+ and 3_1^+ in ²⁰O by nucleon transfer

¹⁹O(d,pγ) + DSAM

- Probe the 3-body interaction

Daniele Mengoni

MUGAST+AGATA @ GANIL

EuNPC 2022

E. Clément (GANIL), A. Goasduf

Ph.D : I.Zanon (Ferrara U.)

(INFN)

¹⁹O(d,pγ)

Role of 3-body forces

- Triple coincidences: reconstructed entry point (MUGAST) through transfer reaction to avoid top feeding + continuous-angle line shape (AGATA)+ channel selection (VAMOS)
- Lifetimes measured significanlty shorter than predictions for the 2⁺, theoretical interpretation ongoing
- First lifetime measurement in the tens of femto-sec. scale (DSAM) using transfer reaction in inverse kinematics

Daniele Mengoni

Conclusion and perspectives

- Instrument of new generation enables large leap in detection sensitivity which translated in physics at he frontier
- Highlights from the AGATA+MUGAST+VAMOS campaign @GANIL
- Future campaigns are planned with upgraded setup for quality scientific results

Daniele Mengoni

MUGAST+AGATA @ GANIL

Daniele Mengoni

