Exotic neutron rich nuclei in the ${ }^{132} \mathrm{Sn}$ region

Tom Parry
University of Surrey

R Process

BigRIPS and Zero Degree Fragment Separators

Primary Beam of ${ }^{238} \mathrm{U}$ at $345 \mathrm{MeV} / \mathrm{u}$, beam intensity of 60pnA. BigRIPS tuned for ${ }^{130} \mathrm{Cd}$ with a measured beam rate of about 50pps.
ZeroDegree tuned for ${ }^{129} \mathrm{Ag}$.

- Kubo T. et al, BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory, Prog. Theor. Exp. Phys.2012, $03 C 003$

HiCARI - 光

HiCARI part way through construction

Why HiCARI?

- Temporary, high resolution detection system at RIKEN
- Combines multiple types of HPGe detectors of different designs
- Replaces DALI2 of Nal type

- Proposal for construction of HiCARI,
https://www.nishina.riken.jp/collaboration/SUNFLOWER/devices/hrarray/ ConstructionProposal.pdf

High velocity Doppler correction

$\sim 150 \mathrm{MeV} / \mathrm{u}, \mathrm{v} \sim 0.5 \mathrm{v} / \mathrm{c}$
Thick 6 mm secondary target

$$
E_{\gamma}^{\prime}=E_{\gamma} \frac{1-\beta \cos \theta}{\sqrt{1-\beta^{2}}}
$$

Accurate beta and positions needed

${ }^{9} \mathrm{Be}\left({ }^{132} \mathrm{Sn},{ }^{131} \mathrm{In}\right)$ Test case

Nature of thick target broadens the peak even at such short lifetimes

Known single particle proton structure.
Populated directly
M1 988 keV Transition

$$
\pi p^{3} / 2 \rightarrow \pi p^{1 / 2}
$$

Short life time resulting in prompt transition

Gives information on ideal signal response from HiCARI

Shell Model

NuShellX

Model Space:

Z: 28~50
N: 50~82
jj45pna interaction

Single particle energies from experiments ${ }^{131} \operatorname{In},{ }^{131} \mathrm{Sn}$
jj45pna was modified
Proton-proton interaction from Cenxi Yuan et al, Phys.Lett.B 762 (2016) 237

Works well for region

Doesn't work well near ${ }^{132} \mathrm{Sn}$ e.g ${ }^{130} \mathrm{Cd}$

Reaction theory

Shell Model: Excited states and wave functions

Wave functions gives spectroscopic factors

Spectroscopic factors to get reaction cross section on a state by state basis

Knockout

reaction

Initial nucleus
(g.s + isomer)

Final nucleus

J. A. Tostevin, Nucl. Phys. A 682, 320 (2001).
P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53,219
(2003)

${ }^{130} \mathrm{Cd}$ proton-proton interaction

- Z=48
- N= 82
- Only delayed yrast transitions observed at GSI and RIKEN
- Only $\pi(\mathrm{g} / 2)^{2}$ configuration observed

Zero degree Particle identification plot gated on ${ }^{131}$ In in Bigrips. ${ }^{130} \mathrm{Cd}$ highlighted

$$
{ }_{48}^{130} \mathrm{Cd}_{82}
$$

Gives information on proton-proton interaction

Ideal to test shell model calculations

${ }^{9} \operatorname{Be}\left({ }^{131} \mathrm{In},{ }^{130} \mathrm{Cd}\right)$

${ }^{130} \mathrm{Cd}$ Interpretation

Use Geant4 Simulation to generate response signal from

Outlook

Still work to be done on shown isotopes, final fitting and improved simulations

Developing level schemes of other nuclei
${ }^{130} \mathrm{In} \quad{ }^{132} \mathrm{In} \quad{ }^{129} \mathrm{ln}$

Other work being carried out in parrallel by Michael Armstrong at GSI

Life time analysis of yrast states in ${ }^{128} \mathrm{Cd}$
${ }^{129} \mathrm{Ag}$ proving to be challenging, low statistic with high background
supressing gammas

Summary

- Wide variety of nuclei in the ${ }^{132} \mathrm{Sn}$ region in data set
- Preliminary decay scheme for ${ }^{130} \mathrm{Cd}$ determined
- Provides Information on proton-proton interaction

Collaborators

T Parry ${ }^{1}$, M Armstrong ${ }^{2}$, Zs Podolyák 1, M Górska ${ }^{2}$, J Acosta ${ }^{3}$, Z Q Chen ${ }^{1}$, A Jungclaus ${ }^{3}$, K Wimmer ${ }^{3,4}$, P Doornenbal ${ }^{4}$, N Aoi ${ }^{5}$, H Baba 4, G Bartram ${ }^{1}$, F Browne ${ }^{4}$, C Campbell ${ }^{6}$, H Crawford ${ }^{6}$, H De Witte 7, C Fransen ${ }^{8}$, H Hess ${ }^{8}$, S Iwazaki 5, J Kim ${ }^{4}$, A Kohda ${ }^{5}$, T Koiwai 9,4, B Mauss 4, B Moon 4, P Reiter ${ }^{8}$, D Suzuki ${ }^{4}$, R Taniuchi ${ }^{10,4}$, S Thiel ${ }^{8}$, J A Tostevin ${ }^{1}$, Y Yamamoto ${ }^{5}$, A Yaneva ${ }^{2}$ and C Yuan ${ }^{11}$

[^0]
${ }^{130}$ In proton-neutron interaction

- $\mathrm{Z}=49$, $\mathrm{N}=81$
- Gives information on proton neutron interaction below
${ }^{132}$ Sn
- Relativey high production rate
- Studied in beta decay, low spin states populated ${ }^{130} \mathrm{Cd} \rightarrow{ }^{130} \mathrm{In}$

Zero degree Particle idtentification plot gated on
${ }^{131}$ In in Bigrips. ${ }^{130}$ In highlighted

${ }^{9} \operatorname{Be}\left({ }^{131} \ln ,{ }^{130} \ln \right)$

${ }^{130}$ In

The R Process

- SkyNet Animation, Jonas Lippuner,https://jonaslippuner.com/research/skynet/

${ }^{129} \mathrm{Ag} ?$

h_egamABdc_delta0_br_in131_ana_d0_zd5_ag129_ana

[^0]: ${ }^{1}$ Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
 ${ }^{2}$ Gesellschaft für Schwerionenforschung (GSI), Planckstraße 164291 Darmstadt Germany
 ${ }^{3}$ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
 ${ }^{4}$ RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
 ${ }^{5}$ RCNP, Osaka University, 0-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
 ${ }^{6}$ Nuclear Science Division, Lawerence Berkely National Laboratory, 1 Cyclotron Road, Berkeley, California, United States
 ${ }^{7}$ Instituut voor Kern- en Stralingsfysica Celestijnenlaan 200d - bus 2418 B-3001 Heverlee Belgium
 ${ }^{8}$ Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 7750937 Köln, Germany ${ }^{9}$ Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan
 ${ }^{10}$ Department of Physics, University of York, York, YO10 5DD, United Kingdom
 ${ }^{11}$ Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, Guangdong, China

