Exotic neutron rich nuclei in the ¹³²Sn region Tom Parry University of Surrey #### R Process #### BigRIPS and Zero Degree Fragment Separators Primary Beam of ²³⁸U at 345 MeV/u, beam intensity of 60pnA. BigRIPS tuned for ¹³⁰Cd with a measured beam rate of about 50pps. ZeroDegree tuned for ¹²⁹Ag. Kubo T. et al, BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory, Prog. Theor. Exp. Phys. 2012, 03C003 ### HiCARI - 光 HiCARI part way through construction #### **Why HiCARI?** - Temporary, high resolution detection system at RIKEN - Combines multiple types of HPGe detectors of different designs - Replaces DALI2 of Nal type Proposal for construction of HiCARI, https://www.nishina.riken.jp/collaboration/SUNFLOWER/devices/hrarray/ ConstructionProposal.pdf # High velocity Doppler correction ~150 MeV/u , v~0.5 v/c Thick 6mm secondary target $$E_{\gamma}' = E_{\gamma} \frac{1 - \beta \cos \theta}{\sqrt{1 - \beta^2}}$$ Accurate beta and positions needed # ⁹Be(¹³²Sn, ¹³¹In) Test case Nature of thick target broadens the peak even at such short lifetimes Known single particle proton structure. Populated directly M1 988 keV Transition π p³/₂ → π p¹/₂ Short life time resulting in prompt transition Gives information on ideal signal response from HiCARI #### Shell Model NuShellX Model Space: Z: 28~50 N: 50~82 jj45pna interaction Single particle energies from experiments ¹³¹In, ¹³¹Sn Doesn't work well near ¹³²Sn e.g ¹³⁰Cd jj45pna was modified Proton-proton interaction from Cenxi Yuan et al, Phys.Lett.B 762 (2016) 237 Works well for region # Reaction theory Shell Model: Excited states and wave functions Wave functions gives spectroscopic factors Spectroscopic factors to get reaction cross section on a <u>state by state basis</u> J. A. Tostevin, Nucl. Phys. A 682, 320 (2001). P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53,219 (2003) # ¹³⁰Cd proton-proton interaction - Z=48 - N= 82 - Only delayed yrast transitions observed at GSI and RIKEN - Only π (g\%)² configuration observed Zero degree Particle identification plot gated on ¹³¹In in Bigrips. ¹³⁰Cd highlighted Gives information on proton-proton interaction Ideal to test shell model calculations # ⁹Be(¹³¹In, ¹³⁰Cd) # 130Cd Interpretation 539 1325 Use Geant4 Simulation to generate response signal from HiCARI #### Outlook Still work to be done on shown isotopes, final fitting and improved simulations Developing level schemes of other nuclei 130 In 132 In 129 In Other work being carried out in parrallel by Michael Armstrong at GSI Life time analysis of yrast states in ¹²⁸Cd 129Ag proving to be challenging, low statistic with high background supressing gammas ### Summary - Wide variety of nuclei in the ¹³²Sn region in data set - Preliminary decay scheme for ¹³⁰Cd determined - Provides Information on proton-proton interaction #### Collaborators T Parry¹, M Armstrong², Zs Podolyák¹, M Górska², J Acosta³, Z Q Chen¹, A Jungclaus³, K Wimmer^{3,4}, P Doornenbal⁴, N Aoi⁵, H Baba⁴, G Bartram¹, F Browne⁴, C Campbell⁶, H Crawford⁶, H De Witte⁷, C Fransen⁸, H Hess⁸, S Iwazaki⁵, J Kim⁴, A Kohda⁵, T Koiwai^{9,4}, B Mauss⁴, B Moon⁴, P Reiter⁸, D Suzuki⁴, R Taniuchi^{10,4}, S Thiel⁸, J A Tostevin¹, Y Yamamoto⁵, A Yaneva² and C Yuan¹¹ ¹Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ²Gesellschaft für Schwerionenforschung (GSI), Planckstraße 1 64291 Darmstadt Germany $^{^3}$ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain ⁴RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan ⁵RCNP, Osaka University, 0-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan ⁶Nuclear Science Division, Lawerence Berkely National Laboratory, 1 Cyclotron Road, Berkeley, California, United States $^{^7}$ Instituut voor Kern- en Stralingsfysica Celestijnen
laan 200d - bus 2418 B-3001 Heverlee Belgium ⁸Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77 50937 Köln, Germany ⁹Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan ¹⁰Department of Physics, University of York, York, YO10 5DD, United Kingdom ¹¹Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, Guangdong, China ## ¹³⁰In proton-neutron interaction - Z=49, N=81 - Gives information on proton neutron interaction below 132Sn - Relativey high production rate - Studied in beta decay, low spin states populated ¹³0Cd→¹³0In Zero degree Particle idtentification plot gated on ¹³¹In in Bigrips. ¹³⁰In highlighted # ⁹Be(¹³¹In, ¹³⁰In) Again due to being populated by 131 In likely to have π g 9 /₂ and π p 1 /₂ configurations ### **I**n #### The R Process # 129Ag?