From correlations to universal behavior in Few-Nucleon Systems

A. Kievsky

INFN, Sezione di Pisa (Italy)

EuNPC 2022

Santiago de Compostela, 24-29 October 2022

Collaborators

- M. Gattobigio INPHYNI & Nice University, Nice (France)
- M. Viviani and L.E. Marcucci INFN & Pisa University, Pisa (Italy)
- L. Girlanda Universita' del Salento, Lecce (Italy)
- R. Schiavilla Jlab & Old Dominion University, (USA)
- E. Garrido CSIC, Madrid (Spain)
- A. Deltuva ITPA, Vilnius (Lithuania)
- A. Polls Universitat de Barcelona, Barcelona Spain
- B. Juliá-Díaz Universitat de Barcelona, Barcelona Spain
- N. Timofeyuk University of Surrey, Guildford (UK)
- I. Bombaci and D. Logoteta INFN & Pisa University, Pisa (Italy)

Outline

- Appearance of universal behavior
- Equal long-range behavior but very different short-range behavior
- Weakly bound systems
- Definition of the unitary limit
- Definition of the universal window: Efimov physics
- Dynamics governed by a few parameters (control parameters)
- Continuous (or discrete) scale invariance
- Impact of Efimov physics in nuclear systems

Interplay of two aspects

- Weakly bound systems are strongly correlated
- In the universal regime details of the interaction are not important
- Effective interactions
- Are correlated systems and universal properties compatible?

Outline

- Appearance of universal behavior
- Equal long-range behavior but very different short-range behavior
- Weakly bound systems
- Definition of the unitary limit
- Definition of the universal window: Efimov physics
- Dynamics governed by a few parameters (control parameters)
- Continuous (or discrete) scale invariance
- Impact of Efimov physics in nuclear systems

Interplay of two aspects

- Weakly bound systems are strongly correlated
- In the universal regime details of the interaction are not important
- Effective interactions
- Are correlated systems and universal properties compatible?

Low energy quantities

- We consider a short-range interaction: $V(r > r_0) \rightarrow 0$
 - In this case low energy means $E = k^2 \hbar^2 / m < \hbar^2 / m r_0^2$
- In this regime the s-wave phase shift is well described by the effective range expansion up to second order

$$k \cot \delta_0 = -1/a + r_e k^2/2 + \dots$$

with a the scattering length defined from the zero-energy Schrödinger equation, $H\phi_0=0$

$$\phi_0(r\to\infty)\to u_0=1-a/r$$

and re the effective range

$$r_{\rm e} = \frac{2}{a^2} \int_0^\infty (\phi_0^2 - u_0^2) r^2 dr$$

The presence of a shallow bound state

A bound state correspond to the S-matrix pole $k \cot \delta_0 - ik = 0$ In general all terms in the expansion of $k \cot \delta_0$ are needed. However, when a shallow state appears (fine tuning), we can use the expansion up to second order ($i\kappa = k$)

$$\kappa = 1/a + r_e \kappa^2/2 + \dots$$

which introduces a strict correlation between the low energy parameters ($E = \hbar^2 \kappa^2 / m$).

Defining the lengths $a_B = 1/\kappa$ and $r_B = a - a_B$, they are related up to second order by

$$r_e a = 2r_B a_B$$

The universal window is defined when $r_e/a \approx r_e/a_B << 1$

Observables

Other observables are stricted correlated to the low-energy parameters (up to second order).

The mean square radius:

$$\langle r^2 \rangle = \frac{a^2}{8} \left[1 + \left(\frac{r_B}{a} \right)^2 + \cdots \right] = \frac{a_B^2}{8} e^{2r_B/a_B} = \frac{a_B^2}{8} f_{sc}$$

The asymptotic normalization constant

$$C_a^2 = \frac{2}{a_B} \frac{1}{1 - r_e/a_B} = \frac{2}{a_B} e^{2r_B/a_B} = \frac{2}{a_B} f_{sc}$$

the probability to be outside the interaction range

$$P_{e} = C_{a}^{2} \int_{2r_{B}}^{\infty} e^{-2r/a_{B}} dr = e^{-2r_{B}/a_{B}} = \frac{1}{f_{sc}}$$

Universal behavior in few-body systems

Examples

The helium dimer (as given by the LM2M2 potential):

$$a = 189.415 \text{ a.u.},$$
 $\rightarrow a_B = 182.221 \text{ a.u.}$ $r_e = 13.8447 \text{ a.u.},$ $\rightarrow r_B = 7.194 \text{ a.u.}$ $\rightarrow E_d = 1.303 \text{ mk},$ $\rightarrow E(a, r_e) = 1.303 \text{ mk}$ $(r_e \ a)/(2r_B a_B) = 1.0002$ $\rightarrow r_e/a = 0.073$

• The deuteron:

The deuteron:
$$a^1 = 5.419 \pm 0.007 \text{ fm},$$
 $r_e^1 = 1.753 \pm 0.008 \text{ fm},$ $r_e^1 = 1.753 \pm 0.008 \text{ fm},$ $r_e^1 = 1.101 \pm 0.007 \text{ fm}$ $r_e^1 = 1.97535(85) \text{ fm}$ $r_e^1 = 1.101 \pm 0.007 \text{ fm}$ $r_e^1 = 1.97535(85) \text{ fm}$ $r_e^1 = 0.8781(44) \text{ fm}^{-1/2}$ $r_e^1 = 0.8781(44) \text{ fm}^{-1/2}$ $r_e^1 = 0.8782 \text{ fm}^{-1/2}$ $r_e^1 = 0.9991$ $r_e^1 = 0.32$

Protagonists of the story:

 $a \rightarrow$ scattering length

 $r_{\it eff}
ightarrow {\it effective range}$

 $a_B
ightarrow E = \hbar^2/m a_B^2
ightarrow ext{energy length}$

The Hero

Universal behavior in few-body systems

 When a shallow state exists, the systems can be organized inside the universal window. The experimental points can be connected using a potential model (here a Gaussian potential).

Gaussian characterization of the universal window

 $V(1,2) = V_0 e^{-r^2/r_0^2}$, with the unitary limit at $V_0 = 2.684 \hbar^2/mr_0^2$

At $r_0/a = 0.2877$ a Gaussian potential describes correctly the deuteron low-energy parameters a^1, r_a^1, a_B

Moving along the universal window

- By scaling the strength of the potential, systems can be (ideally) moved along the universal window
- The Gaussian charaterization can be used to continously connect systems inside the window

Continuous scale invariance

$$egin{aligned} \mathbf{a} &
ightarrow lpha \mathbf{a} \ \mathbf{a}_{\mathcal{B}} &
ightarrow lpha \mathbf{a}_{\mathcal{B}} \ \mathbf{r}_{\mathcal{B}} &= \mathbf{a} - \mathbf{a}_{\mathcal{B}}
ightarrow lpha \mathbf{r}_{\mathcal{B}} \ \mathbf{r}_{\mathbf{e}} &= \mathbf{2} \mathbf{r}_{\mathcal{B}} \mathbf{a}_{\mathcal{B}} / \mathbf{a}
ightarrow lpha \mathbf{r}_{\mathbf{e}} \end{aligned}$$

 $r_0 = constant$

The three-body system inside the universal window

- The energy spectrum of three equal bosons shows a discrete scale invariance (DSI)
- \bullet As the range of the interaction goes to zero, $(\red{r_0} \rightarrow 0) \rightarrow$ Thomas collapse
- At the unitary limit $1/a \rightarrow 0 \rightarrow$ Efimov effect

Gaussian characterization of the universal window for

three bosons:
$$H = T + V_0 \sum_{i < j} e^{r_{ij}^2/r_0^2}$$

Footprint of universality

where the van der Waals length is $\ell_{vdW} = \frac{1}{2}(2mC_6/\hbar^2)^{1/4}$ For the Gaussian characterization this is encoded in the (almost) model independet relation $\kappa_*^{(0)}a_-^{(0)} = -4.37r_0\frac{0.4883}{r_0} = -2.14$ And for van der Waals species $\kappa_*^{(0)}a_-^{(0)} \approx -2.2$

Gaussian characterization of the universal window for three 1/2 spin-isospin fermions

Two nucleon data

two nucleons	E ₂ (MeV)	a ^S (fm)	r_e^S (fm)
np S = 1	2.2245	5.419	1.753
np S = 0	0.0661	-23.740	2.77

The Potential:

$$V(i,j) = V_0 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{01} + V_1 e^{-r_{ij}^2/r_1^2} \mathcal{P}_{10}$$

with \mathcal{P}_{ST} the projector on the spin-isospin channels S, T

Walking along the nuclear cut:

Fixing $r_0 = r_1$, the strengths V_0 and V_1 are varied verifying $a^0/a^1 = -4.38$

Gaussian characterization of the universal window for three 1/2 spin-isospin fermions

Correlations inside the universal window, the *nd* scattering length: ${}^2a_{nd} = 0.65 \pm 0.01$ fm

A. Deltuva, M. Gattobigio, A. K. and M. Viviani, PRC 102, 064001 (2020)

Correlations inside the universal window: the Phillips line

Gaussian characterization of the universal window for four 1/2 spin-isospin fermions

The ³H and ⁴He physical points

At the 3 H physical point $r_0/a_B=0.457$ or $r_0=1.97$ fm At the 4 He physical point $r_0/a_B=0.483$ or $r_0=2.08$ fm This implies that exist a potential

$$\sum_{i < j} \left(V_0 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{01} + V_1 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{10} \right)$$

that describes simultaneously 2 H and 3 H (for $r_0 = 1.97$ fm) and 2 H and 4 He (for $r_0 = 2.08$ fm).

At the unitary limit $E_*^3 = 2.6 \text{ MeV}$ and $E_*^4 = 13.5 \text{ MeV}$

These potentials are a low-energy representation of the nuclear interaction. The different ranges in N=3 and N=4 reflect the fact that one ingredient is missing: the three-body force.

Gaussian characterization of the universal window for 1/2 spin-isospin fermions up to A=6

Including the three-nucleon force

The potential is now

$$\sum_{i < j} V(i, j) + \sum_{i < j < k} W(i, j, k)$$

with

$$V(i,j) = \left(V_0 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{01} + V_1 e^{-r_{ij}^2/r_0^2} \mathcal{P}_{10}\right)$$

and

$$W(i,j) = W_0 e^{-r_{ijk}^2/\rho_0^2}$$

with $r_{ijk}^2 = r_{ij}^2 + r_{jk}^2 + r_{ki}^2$ and W_0 and ρ_0 fixed to describe simultaneously ³H and ⁴He.

The physical point turning on the Coulomb interaction

$$V_C(r) = \epsilon \frac{e^2}{r}$$

M. Gattobigio, A.K. and M. Viviani, PRC 100, 034004 (2019)

The nuclear chart with the two- plus three-body gaussian potential

R. Schiavilla et al., PRC 103, 054003 (2021)

The saturation point of nuclear matter

A. Kievsky et al., PRL 121, 072701 (2018)

The 0⁺ resonance of ⁴He

M. Viviani et al., PRC 102, 034007 (2020)

The 0⁺ resonance of ⁴He

Energy of the resonance and its width as extracted from the p-3H phase-shifts using the HH method (M. Viviani et al, PRC 102, 034007 (2020)). The experimental values are extracted from the R-matrix analysis (D. R. Tilley, H. R. Weller, and G. M. Hale, Nucl. Phys. A541i, 1 (1992)).

Interaction	E _R (MeV)	Γ (MeV)
N3LO500	0.126	0.556
N3LO600	0.134	0.588
N3LO500/N2LO500	0.118	0.484
N3LO600/N2LO600	0.130	0.989
N4LO450/N2LO450	0.126	0.400
N4LO500/N2LO500	0.118	0.490
N4LO550/N2LO550	0.130	0.740
Expt.	0.39	0.50

The $d(d, n)^3$ He and $d(d, p)^3$ H s-factor

The *dd* polarization observables

M. Viviani, L. Girlanda, A.K., D. Logoteta, L. E. Marcucci, arXiv:nucl-th/2207.01433

Conclusions

- Weakly bound systems can be located inside a window in which universal behavior emerges
- The universal behavior can be encoded in a two-parameter potential (as a Gaussian)
- Using this potential, trajectories (and correlations) can be studied along the universal window
- The physical point can be connected continuously to the unitary point
- Nuclear levels emerge from the unitary point
- A two- plus a three-body soft interaction has been used to reproduce low energy observables in A=2,3,4 and to predict energies along the nuclear chart
- The 0⁺ stae of ⁴He has been analyzed together with dd low energy observables

