Search for Electron Capture of ¹⁷⁶Lu with a LYSO scintillator <u>Francesco Nozzoli</u>, Luigi Ernesto Ghezzer, Roberto Iuppa, Paolo Zuccon (University of Trento & INFN-TIFPA) # Decay scheme of ¹⁷⁶Lu ¹⁷⁶Lu normally decays by beta decay to ¹⁷⁶Hf with a half-life of ≃40 Gyr. Natural abundance of ¹⁷⁶Lu is 2.6% Lu/Hf is useful for radiometric dating age of minerals and cosmic objects, ¹⁷⁶Lu/¹⁷⁶Hf can be used as an s-process thermometer in star nucleosynthesis. ¹⁷⁶Lu is also one of the six naturally occurring isotopes potentially unstable for Electron Capture (EC). Evidence for EC decay was found for ⁴⁰K, ⁵⁰V and ¹³⁸La, but is still missing for ¹²³Te, ¹⁷⁶Lu and ¹⁸⁰Ta* An (unexpectedly) large branching ratio for ¹⁷⁶Lu EC could reconcile some discrepancies involving Lu/Hf age comparisons in different samples **BETA DECAY** # EC decay: pure EC decay and forbiddenness Electron capture is a process where a proton-rich nuclei absorbs an electron and emits a neutrino. Considering the nucleus size and the v energy, it is very hard that the v carries away more than $\frac{1}{2}\hbar$ ¹⁷⁶Lu EC decay is 7th or 5th forbidden! The Forbiddenness of a EC decay is related to the jump total angular momentum and parity. $$I_i = I_f + L + S$$ 7- 0 176Lu 106.2 176**V** h # EC decay: Radiative EC In highly forbidden EC, a photon can be emitted removing ħ angular momentum REC experimentally observed in ⁴¹Ca,⁵⁹Ni,⁷¹Ge,⁸¹Kr,¹³⁷La,²⁰⁴TI ... - Internal Bremsstrahlung (IB), captured electron emits photon(s) - Detour Transition (DT), nucleus emits photon(s) # EC decay: visible energy in EC/REC Example: EC decay to 2⁺ ¹⁷⁶Yb (the less forbidden). Signature of this transition is the 82 keV gamma from ¹⁷⁶Yb relaxation. In addition: $$Q' = (Q_{EC} - E_{v82}) = 24 \text{ keV (k-shell capture not allowed)}$$ #### **VISIBLE ENERGY** in this decay: - Pure EC decay (discrete energies): - $Q E_v = E_{v82} + E_b < 82 + 10.5 \text{ keV}$ - REC decay (continuous spectrum): $$Q - E_v = E_{v82} + E_b + E_{vrad} = [82 \text{ to } 82+24] \text{ keV}$$ # Detector: LYSO as active ¹⁷⁶Lu source LYSO (Lutetium-yttrium oxyorthosilicate) scintillator coupled with a PMT in coincidence with a HP-Ge detector. Expected β -decay activity: 40Bq/g The thin source geometry allows 82keV photon to escape the crystal and to be detected in a nearby HP-Ge. LYSO measures X-rays and Auger efrom the filling process of the vacancy or the possible radiative photons. Active 176 Lu source: powerful rejection of β decay bkg. LYSO (7.9 gr) Hamamatsu R5946 PMT # HP-Ge: performances HP-Ge was self-calibrated with (88, 202, 307) keV gamma of ¹⁷⁶Lu $$\sigma_{HP-Ge}[88] = 0.65 \text{ keV}$$ HP-Ge intrinsic/external bkg measured without the LYSO source (Pb x-rays and ²³⁸U->²³⁴Th->²³⁴Pa chain) 5th European Nuclear Physics Conference, Santiago de Compostela (ES) 24-28 october 2022 # LYSO: performances LYSO scintillator calibrated with 241 Am 59.5keV and 13.8-17.7keV from 237 Np* (since 176 Lu β spectrum is continuous) Coincidence efficiency relative to 88 keV (LYSO self-absorption + Ge eff. + Al housing) 5th European Nuclear Physics Conference, Santiago de Compostela (ES) 24-28 october 2022 # Signal topology: 2⁺Yb EC decay 5th European Nuclear Physics Conference, Santiago de Compostela (ES) 24-28 october 2022 # Example of background: β⁻ decay $$Q_{\beta^{-}} = 1191 \text{ keV}$$ $E_{Ge} = 88 \text{ keV}$ $E_{LYSO} \approx 400 \text{ keV}$ # Two-dimensional spectrum of ¹⁷⁶Lu 5th European Nuclear Physics Conference, Santiago de Compostela (ES) 24-28 october 2022 # Results: EC decay to Selection: Energy_{LYSO}< 25 keV reduces the bkg of a factor ~ 20. residual bkg due to Ge detector intrinsic cont. or external gamma. # 90h exposure: no evidence for 82keV collected 120k gamma from ¹⁷⁶Hf* (88keV) <220 events in 82keV region (90% C.L.) Branching ratio limit: (for all possible channel to ¹⁷⁶Yb 2⁺) # B < 0.22% (90%C.L.) Improvement of a factor ~4 wrt previous measurements (10g LuCl₃ passive source x 65h) [Appl. Rad. and Isotopes 60 (2004) 767–770] 5th European Nuclear Physics Conference, Santiago de Compostela (ES) 24-28 october 2022 # Investigation of the possible EC/REC channels to ¹⁷⁶Yb 2⁺ In the decay to 176 Yb 2⁺ a K-shell electron cannot be captured:(Q_{EC} - E_{v82}) < E_{bK} = 61.3 keV $(Q_{EC}^- E_{y82}^-) > E_{bL}^- = 10.5-10-8.9 \text{keV}$ L-shell electrons have the largest overlap with the nucleus: M-shell electron capture can still provide sizable energy in LYSO E_{bM}= 2.4-2.2-2.0-1.6-1.5keV Models of REC: **-**S-capture: Nuc.Phys.A.728(2003)3 we adopt the most cautious R factor. -2P and 3P capture: R factor tables in: # Investigation of the possible EC/REC channels to ¹⁷⁶Yb 2⁺ selection: 3keV<E_{LYSO}<18keV # Results: EC/REC decay to ¹⁷⁶Yb 0⁺ A signature of K-shell electron capture is 2keV < E_{LYSO} < 47keV ¹⁷⁶Hf*(88) the Yb K₈x-ray: **59.3keV** (15% of 1S-EC) 2keV < E_{LYSO} < 4.5keV K_{β} Lu&Hf The maximum visible energy in LYSO is: 1000 K_{α} Lu&Hf $(Q_{EC} - 59.3 \text{keV}) = 47 \text{ keV}$ 100 — Data 59keV 1000 1S-K₈ No evidence for 59 or 82 keV 1S REC 10 = 100 10 20 30 40 50 60 Energy_{Ge} [keV] Unsino bko du<mark>e</mark> to <67 Yb K_{R} events in $2 < E_{LYSO} < 47 \text{keV}$ iu *(6)* deleav <11 Yb K_{β}^{P} events in $2 < E_{LYSO}^{2} < 4.5 \text{keV}$ 10 <13 ¹⁷⁶Yb*(82) events in 2<E_{LYSO}<4.5 keV Energy_{LYSO} [keV] 5th European Nuclear Physics Conference, Santiago de Compostela (ES) 24-28 october 2022 | Conclusions: | Electron Capture process | Branching fraction limit (90% C.L.) | Previous limits (68% C.L.) Appl. Rad. & Isot. 60(2004)767 (10g LuCl3 pass. source x 65h) | |--|--|-------------------------------------|--| | Imits to ¹⁷⁶ Lu EC improved 3 to 30 times (depending on channel) Further improvements are possible with LYSO scintillating bolometers and low bkg HP-Ge placed underground. Among the 3/6 naturally occurring EC unstable nuclei ¹⁷⁶ Lu EC still wait for a lab. measurement | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 0+ 1S-EC | 0.018% | 0.36% | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 0+ 1S-REC | 0.055% | | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 2+ 2P-EC/REC | 0.03% | | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 2+ 3S-REC | 0.033% | 0.45% | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 2+ nS-REC | 0.04% | | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 2+ 3P-REC | 0.03% | | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 2+ 3S/3P-EC | 0.025% | | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 2+ 3D-EC | 0.032% | | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 2+ 4S-EC | 0.14% | | | | ¹⁷⁶ Lu-> ¹⁷⁶ Yb 2+ (others) | 0.22% | | | 5th European Nuclear Physics Conference, Cartiago de Compostela (EC) 24-29 estabar 2022 | | | | #### Teaser: an hint for 4F -EC/REC capture: 4F REC would match the angular momentum requirements (v s-wave) We have no prediction for F-shell REC but a very soft energy spectrum expected (and E_h for 4F is neglibible) 186±81 events in 82 keV ROI $$B_{4F EC/REC} = 0.18\% \pm 0.08\%$$ 2.3σ hint to be investigated in future measurements (it is a fragile excess...)