

Contribution ID: 170

Type: Oral Contribution

Search for Electron Capture in 176Lu with a LYSO scintillator

Tuesday 25 October 2022 16:10 (20 minutes)

Naturally occurring ¹⁷⁶Lu decays by β - decay to ¹⁷⁶Hf with a half-life of 37.8 Gyr. This radioactive decay provides an important isotopic clock (Lu/Hf) to date meteorites and minerals, further-

more ¹⁷⁶Lu/¹⁷⁶Hf can be used as an s-process thermometer in studies of stellar nucleosynthesis. It has been suggested that some discrepancies involving Lu/Hf age comparisons in different samples could be reconciled if ¹⁷⁶Lu also underwent significant electron capture (EC) decay.

In particular, besides the well known β - decay to ¹⁷⁶Hf, the ¹⁷⁶Lu is also expected to be unstable with respect to electron capture decay to ¹⁷⁶Yb. The Q_{EC} for decay to the ¹⁷⁶Yb ground state is 106.2 keV. Thus, EC decays to both the J^p = 0⁺ ground state and the J^p = 2⁺ 82 keV first excited state of ¹⁷⁶Yb are both possible. These EC decay branches would be 7th and 5th forbidden transitions, respectively, and thus are expected to be negligibly small.

Previous searches of the ¹⁷⁶Lu EC decay were performed by using a passive Lutetium sources and looking for the ¹⁷⁶Yb* 82 keV gamma or the characteristic Yb X-rays in a HP-Ge detector.

Our new approach uses a LYSO crystal scintillator coupled to a PMT as an active Lutetium source, acquired in coincidence with an HP-Ge; this allows a powerful reduction of the background provided by the known 176 Lu β - decay branch.

The preliminary results of the measurement on a detector prototype arranged in the INFN-TIFPA laboratory will be summarized, the upper limits to the EC branching ratio of ¹⁷⁶Lu decay has been improved by a factor 3-20 (depending on the considered EC channel) with respect to previous measurements.

Primary authors: NOZZOLI, Francesco (Universita degli Studi di Trento and INFN (IT)); Mr GHEZZER, Luigi Ernesto (Phys. Dep. University of Trento); IUPPA, Roberto (Universita degli Studi di Trento and INFN (IT)); ZUCCON, Paolo (Universita degli Studi di Trento and INFN (IT))

Presenter: NOZZOLI, Francesco (Universita degli Studi di Trento and INFN (IT))

Session Classification: P1 Accelerators and Instrumentation

Track Classification: P1 Accelerators and Instrumentation