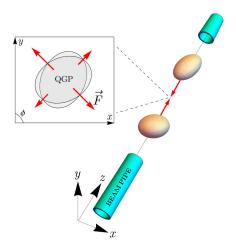
Nuclear shapes from energy density functional and heavy-ion collisions

Benjamin Bally

EuNPC 2022 - Santiago de Compostela - 26/10/2022

Investigation at the interface between high- and low-energy nuclear physics!

- Investigation at the interface between high- and low-energy nuclear physics!
- Nuclear structure inputs for simulations of relativistic heavy-ion collisions


- Investigation at the interface between high- and low-energy nuclear physics!
- Nuclear structure inputs for simulations of relativistic heavy-ion collisions
- Study of 208 Pb + 208 Pb and 129 Xe + 129 Xe collisions performed at LHC ATLAS Collaboration, Report No. ATLAS-CONF-2021-001 ATLAS Collaboration, arXiv:2205.00039

- Investigation at the interface between high- and low-energy nuclear physics!
- Nuclear structure inputs for simulations of relativistic heavy-ion collisions
- Study of ²⁰⁸Pb + ²⁰⁸Pb and ¹²⁹Xe + ¹²⁹Xe collisions performed at LHC ATLAS Collaboration, Report No. ATLAS-CONF-2021-001 ATLAS Collaboration, arXiv:2205.00039
- First evidence of triaxiality in relativistic heavy-ion collisions!
 Bally, Bender, Giacalone, Somà, Phys. Rev. Lett. 128, 082301 (2022)

QGP creation in ultrarelativistic heavy-ion collisions

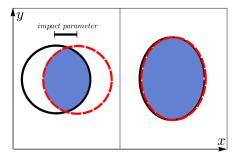
Asymmetry in particle distribution: elliptic flow

Distribution of detected hadrons can be expanded

$$dN/d\phi \propto 1 + 2\sum_{n\geq 1} v_n \cos\left[n(\phi - \phi_n)\right]$$

where v_2 is the elliptic flow (quadrupole component)

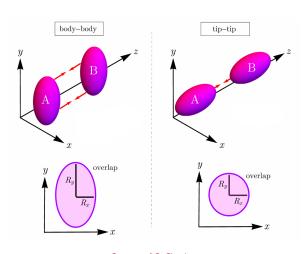
Asymmetry in particle distribution: elliptic flow



Distribution of detected hadrons can be expanded

$$dN/d\phi \propto 1 + 2\sum_{n\geq 1} v_n \cos\left[n(\phi - \phi_n)\right]$$

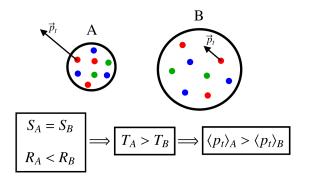
where v_2 is the elliptic flow (quadrupole component)


Linked to geometric asymmetry of the initial condition

Courtesy of V. Somà

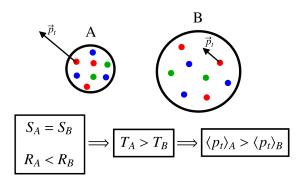
How to discern orientations in central collisions?

Courtesy of G. Giacalone


Relation between the size of the system and $\langle p_t \rangle$

• $\langle p_t \rangle$ is the average transverse momentum of particles

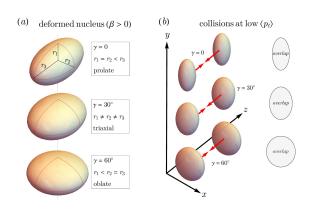
Relation between the size of the system and $\langle p_t \rangle$



Courtesy of G. Giacalone

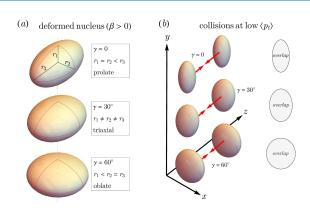
• $\langle p_t \rangle$ is the average transverse momentum of particles

Relation between the size of the system and $\langle p_t \rangle$



Courtesy of G. Giacalone

- $\langle p_t \rangle$ is the average transverse momentum of particles
- Looking at low $\langle p_t \rangle \Rightarrow$ looking at larger nuclear overlaps


Orientation at low $\langle p_t \rangle$

Orientation at low $\langle p_t \rangle$

Pearson correlation coefficient

$$\rho(v_2^2, \langle p_t \rangle) = \frac{\langle \delta v_2^2 \delta \langle p_t \rangle \rangle}{\sqrt{\langle (\delta v_2^2)^2 \rangle \langle (\delta \langle p_t \rangle)^2 \rangle}}$$

where $\delta o = o - \langle o \rangle$

Modeling of the nuclei: Monte-Carlo Glauber

Courtesy of G. Giacalone

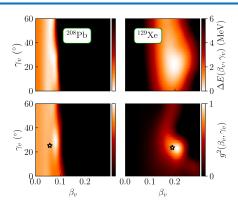
Nucleons sampled using Woods-Saxon density

$$\rho_{\text{ws}}(r,\theta,\varphi) = \rho_0 \left(1 + \exp\left[\frac{1}{a} \left(r - R(\theta,\varphi)\right)\right] \right)^{-1}$$

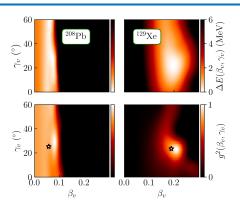
$$R(\theta,\varphi) = R_0 \left\{ 1 + \beta \left(\cos \gamma Y_{20}(\theta,\varphi) + \frac{1}{\sqrt{2}} \sin \gamma \left[Y_{22}(\theta,\varphi) + Y_{2-2}(\theta,\varphi)\right] \right) \right\}$$

- State-of-the-art multi-reference energy density functional calculations
- Variational calculations

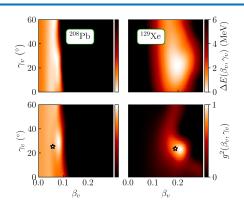
$$\delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0 \quad \text{with} \quad |\Psi \rangle = \sum_{(\beta_{\nu}, \gamma_{\nu})K} f_{(\beta_{\nu}, \gamma_{\nu})K} P_{MK}^{J} P^{N} P^{Z} | \Phi(\beta_{\nu}, \gamma_{\nu}) \rangle$$



- State-of-the-art multi-reference energy density functional calculations
- Variational calculations

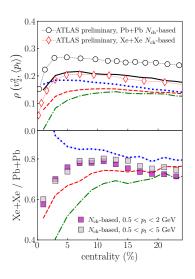

$$\delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0 \quad \text{with} \quad |\Psi \rangle = \sum_{(\beta_{\nu}, \gamma_{\nu})K} f_{(\beta_{\nu}, \gamma_{\nu})K} P_{MK}^{J} P^{N} P^{Z} | \Phi(\beta_{\nu}, \gamma_{\nu}) \rangle$$

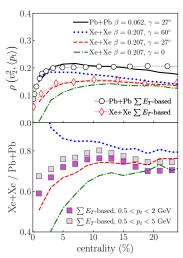
- Explore triaxial deformations $(\beta_{\nu}, \gamma_{\nu})$ through constrained minimizations
- Calculations performed on a 3d Cartesian mesh
- Skyrme-type SLyMR1 parametrization
 Sadoudi et al., Phys. Rev. C 88, 064326 (2013)
 Jodon, PhD thesis, Université Lyon 1 (2014)



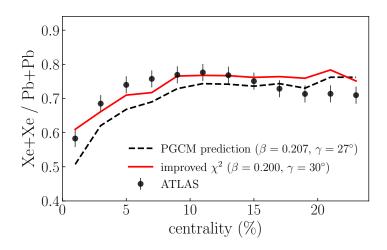
Strategy

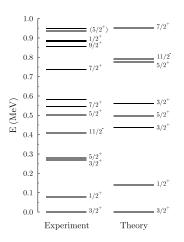
$$\begin{array}{l} \bar{\beta}_{v} = \sum_{(\beta_{v},\gamma_{v})} \beta_{v} \, g^{2}(\beta_{v},\gamma_{v}) \\ \bar{\gamma}_{v} = \sum_{(\beta_{v},\gamma_{v})} \gamma_{v} \, g^{2}(\beta_{v},\gamma_{v}) \end{array} \rightarrow \text{ build } |\Phi(\bar{\beta}_{v},\bar{\gamma}_{v})\rangle \rightarrow \text{ fit WS parameters} \end{array}$$

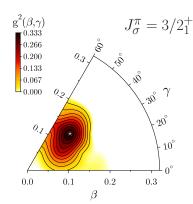

Strategy


$$\bar{\beta}_{\nu} = \sum_{(\beta_{\nu}, \gamma_{\nu})} \beta_{\nu} g^{2}(\beta_{\nu}, \gamma_{\nu})
\bar{\gamma}_{\nu} = \sum_{(\beta_{\nu}, \gamma_{\nu})} \gamma_{\nu} g^{2}(\beta_{\nu}, \gamma_{\nu}) \rightarrow \text{build } |\Phi(\bar{\beta}_{\nu}, \bar{\gamma}_{\nu})\rangle \rightarrow \text{ fit WS parameters}$$

- Results for 208 Pb: a = 0.537 fm, $R_0 = 6.647$ fm, $\beta = 0.062$, $\gamma = 27.04^{\circ}$
- Results for 129 Xe: a = 0.492 fm, R_0 = 5.601 fm, β = 0.207, γ = 26.93 $^\circ$


Analysis of LHC data





Preliminary results on ¹⁹⁷Au

Average def.: $\bar{\beta}$ = 0.13, $\bar{\gamma}$ = 40°

First evidence of triaxiality in relativistic heavy-ion collisions!

Bally, Bender, Giacalone, Somà, Phys. Rev. Lett. 128, 082301 (2022)

First evidence of triaxiality in relativistic heavy-ion collisions!
 Bally, Bender, Giacalone, Somà, Phys. Rev. Lett. 128, 082301 (2022)

- Estimate of triaxial parameters for 129 Xe: $(\beta \approx 0.20, \gamma \approx 30^{\circ})$
 - \rightarrow Consistent with data from low-energy experiments in the region

- First evidence of triaxiality in relativistic heavy-ion collisions!
 Bally, Bender, Giacalone, Somà, Phys. Rev. Lett. 128, 082301 (2022)
- Estimate of triaxial parameters for 129 Xe: $(\beta \approx 0.20, \gamma \approx 30^{\circ})$
 - → Consistent with data from low-energy experiments in the region
- ullet Working on predictions for $^{197}{
 m Au}$ + $^{197}{
 m Au}$
 - ightarrow Motivation for a ^{208}Pb + ^{208}Pb run at RHIC before EIC

- First evidence of triaxiality in relativistic heavy-ion collisions!
 Bally, Bender, Giacalone, Somà, Phys. Rev. Lett. 128, 082301 (2022)
- Estimate of triaxial parameters for 129 Xe: $(\beta \approx 0.20, \gamma \approx 30^{\circ})$
 - → Consistent with data from low-energy experiments in the region
- ullet Working on predictions for $^{197}{
 m Au}$ + $^{197}{
 m Au}$
 - \rightarrow Motivation for a ^{208}Pb + ^{208}Pb run at RHIC before EIC
- Investigation at the interface between high- and low-energy nuclear physics!