

Contribution ID: 75

Type: Oral Contribution

Extending the Hoyle-state paradigm to ¹²**C** + ¹²**C fusion**

Thursday 27 October 2022 15:35 (20 minutes)

Carbon burning is a key step in the evolution of massive stars, Type 1a supernovae and superbursts in xray binary systems. Determining the $^{12}C+^{12}C$ fusion cross section at relevant energies by extrapolation of direct measurements is challenging due to resonances at and below the Coulomb barrier. A study of the $^{24}Mg(\alpha,\alpha')^{24}Mg$ reaction has identified several 0^+ states in ^{24}Mg , close to the $^{12}C+^{12}C$ threshold, which predominantly decay by $^{20}Ne(g.s)+\alpha$. These states were not observed in $^{20}Ne(\alpha,\alpha_0)^{20}Ne$ resonance scattering suggesting that they may have a dominant $^{12}C+^{12}C$ cluster structure. Given the very low angular momentum associated with sub-barrier fusion, these states may play a decisive role in $^{12}C+^{12}C$ fusion in analogy to the Hoyle state in helium burning [1]. We present estimates of updated $^{12}C+^{12}C$ fusion reaction rates based on these newly observed potential resonances.

[1] P. Adsley. M. Heine, D.G. Jenkins et al., Phys. Rev. Lett. (in press)

Primary author: JENKINS, David Gareth (University of York (GB))Presenter: JENKINS, David Gareth (University of York (GB))Session Classification: P9 Few-Body Systems

Track Classification: P9 Few-Body Systems