

The NEXT experiment at the Canfranc Underground Laboratory

Gonzalo Díaz López (St)

group: J. A. Hernando (PI), J. Renner (PD), C. Hervés (St), M. Pérez (St) University of Santiago de Compostela, Spain (on behalf of the NEXT Collaboration)

> October 27th, EuNPC 2022 Conference Santiago de Compostela, Spain

Double beta decay

$$N(A,Z) \rightarrow N(A,Z+2) + 2e^- + 2\overline{\nu}_e$$

Majorana neutrinos and $0\nu\beta\beta$

Majorana neutrinos and $0\nu\beta\beta$

- Unobserved
- $T_{1/2} > 10^{26}$ years

$$S(T_{1/2}^{0\nu\beta\beta}) \propto \epsilon_s \sqrt{\frac{t\cdot M}{b\cdot \Delta E}}$$

To improve sensitivity:

- Good energy resolution
- Active background discrimination
- Scalability

High pressure Xenon TPC!

NEXT Collaboration

Neutrino Experiment with a Xenon TPC

- High pressure xenon (enriched to ¹³⁶Xe) TPC
- Asymmetric configuration:
 - Energy plane (PMTs)
 - Tracking plane (SiPMs)

- High pressure xenon (enriched to ¹³⁶Xe) TPC
- Asymmetric configuration:
 - Energy plane (PMTs)
 - Tracking plane (SiPMs)
- Electron track deposits energy in the form of scintillation and ionization electrons

EL region

- High pressure xenon (enriched to ¹³⁶Xe) TPC
- Asymmetric configuration:
 - Energy plane (PMTs)
 - Tracking plane (SiPMs)
- Electron track deposits energy in the form of scintillation and ionization electrons
- Scintillation light (S1) provides the start of event signal

- High pressure xenon (enriched to ¹³⁶Xe) TPC
- Asymmetric configuration:
 - Energy plane (PMTs)
 - Tracking plane (SiPMs)
- Electron track deposits energy in the form of scintillation and ionization electrons
- Scintillation light (S1) provides the start of event signal
- Ionization electrons are drifted towards the EL-region
- Electroluminescent light (S2) provides both energy and tracking measurements

- High pressure xenon (enriched to ¹³⁶Xe) TPC
- Asymmetric configuration:
 - Energy plane (PMTs)
 - Tracking plane (SiPMs)
- Electron track deposits energy in the form of scintillation and ionization electrons
- Scintillation light (S1) provides the start of event signal
- Ionization electrons are drifted towards the EL-region
- Electroluminescent light (S2) provides both energy and tracking measurements
- 3D reconstruction
- Active background discrimination through Bragg peak

From NEXT-White data

NEXT experimental phases

Prototypes 2008-2014

Demonstration of detector concept

NEXT-White

2015-2021 Background model assessment

 $2\nu\beta\beta$ measurement for ¹³⁶Xe

NEXT-100

2022-2025 Background model assessment Neutrinoless double beta decay search in ¹³⁶Xe

NEXT-HD

2026?

Neutrinoless double beta decay search through inverted neutrino mass ordering

NEXT-BOLD

Barium tagging for background-free experiment

2009 2014 2015 2021 2022 2025 2026

NEXT experimental phases

2009 2014 2015 2021 2022 2025 2026

12

NEXT-White detector

- ~4 kg xenon (90% 136Xe enrichment) at 10 bar
- ~50 cm length, ~20 cm radius, 6 mm EL-gap
- 12 Hamamatsu R11410-10 PMTs with 30% coverage
- 1792 (SensL) SiPMs at 1 cm pitch
- shielding: 20 cm thick lead castle, 6 cm thick inner copper

NEXT-White calibration and reconstruction

Low energy calibration

- Dual trigger DAQ (E<100 keV) and (E>400 keV)
- 83mKr from 83Rb decay is introduced in the chamber
- 83mKr provides 41.5 keV point-like energy depositions, allowing the creation of:
 - Geometrical and lifetime **maps**: energy correction
 - Point spread function (**PSF**): diffusion deconvolution

Reconstruction

- Track hits are corrected using the 83mKr maps
- Track diffusion is deconvoluted using the 83mKr PSF

NEXT-White results

a) Energy resolution of (0.91 \pm 0.07)% FWHM at 2.6 MeV (near Q $\beta\beta$)

JHEP 10 (2019) 230

b) Demonstration of signal vs background rejection via topological discrimination in data using 1.6 MeV double escape peak of ²⁰⁸Tl.

JHEP 10 (2019) 52; JHEP 01 (2021) 189; JHEP 07 (2021) 146

c) Validation of the background model and measurement of $2\nu\beta\beta$ half-life

JHEP 10 (2019) 51; Phys. Rev. C 105, 055501 (2022)

NEXT-White results

- c) Measurement of $2\nu\beta\beta$ half-life
 - signal selection: single-track + topological
 - ~4σ significance
 - compatible with EXO-200 and KamLand-Zen
- new background subtraction technique between enriched and depleted runs

NEXT-100 detector

Under construction at LSC!

NEXT-100 background model components at ROI

- Radiogenic from detector materials: 208Tl and 214Bi from natural U and Th chains
- Cosmogenics: prompt-gammas from neutron activations in detector materials and long lived ¹³⁷Xe activations
- External radon: negligible, clean air fluxed from RAS system at LSC
- External gammas from lab rocks: negligible, lead castle shielding
- External neutrons from lab rocks: negligible (neutron absorber)
- 2νββ: negligible (end-point at ~2.3 MeV)

 $\begin{array}{c} \textbf{Cosmogenics} \\ \textbf{mostly} \ ^{64}\textbf{Cu} \ (84\%), \ ^{66}\textbf{Cu} \ (11\%) \ \textbf{activations} \end{array}$

Muon veto to be installed on lead castle outer surface.

NEXT-100 sensitivity

- Simulation (GEANT4) of ²⁰⁸TI, ²¹⁴Bi, muons and 0νββ to estimate the NEXT-100 sensitivity (counting experiment)
- Signal selection cuts (after reconstruction and fiducialization): (1) single-track + (2) ROI + (3) topology

NEXT-100 sensitivity

- Simulation (GEANT4) of ²⁰⁸Tl, ²¹⁴Bi, muons and 0νββ to estimate the NEXT-100 sensitivity (counting experiment)
- Estimated background rate from radiogenic origin (radiopurity measurements + simulation) < 3.6 counts/year
- Estimated background rate from cosmogenic origin (flux + simulation) ~ **0.04** (prompt- γ , 90% eff μ -veto) + **0.12** (137Xe) **counts/year**

$$S(T_{1/2}^{0\nu\beta\beta}) > 1.8 \cdot 10^{25}$$
 years

Summary and Future

- NEXT-White demonstration of main ingredients for a successful $0\nu\beta\beta$ experiment: calibration and reconstruction methods that provide the achievement of a good energy resolution and topological discrimination
- NEXT-100 in advanced construction state, to be finished at the end of this year 2022
- NEXT-100 background model current limit of < 3.7 counts/year (2.9 · 10⁻³ counts/(keV·kg·year))
- NEXT-100 sensitivity to $0\nu\beta\beta$ similar to closest ¹³⁶Xe TPC competitor EXO-200 (> 3.5 · 10²⁵ years @ 90% C.L.)

$$0νββ: ^{136}Xe → ^{136}Ba^{2+} + 2e^{-}$$

- NEXT-Collaboration has probed ¹³⁶Ba²⁺ tagging with the development of custom molecules
- NEXT Collaboration already in R&D for a future tonne scale detector NEXT-HD and NEXT-BOLD
 - NEXT-HD: tonne scale without Ba-tagging
 - NEXT-BOLD: tonne scale with Ba-tagging

BACKUP

Majorana neutrinos and $0\nu\beta\beta$

Current $0\nu\beta\beta$ generation of experiments

$$S(T_{1/2}^{0
uetaeta})\propto\epsilon_s\sqrt{rac{t\cdot M}{b\cdot\Delta E}}$$

Requirements of a $0\nu\beta\beta$ experiment

- Good signal detection efficiency
- Large exposure (scalability)
- Good energy resolution
- Low background

9/11 possible isotopes with Q $\beta\beta$ ~2-3 MeV

A. Giuliani, North America - Europe Workshop on Future of Double Beta Decay (9/2021)

NEXT-White operation

Data taking periods

- Calibration runs 2017-2018: energy resolution, energy scale and topological discrimination
 - Low energy calibration and monitoring using 83mKr
 - High energy calibration (energy scale) using ²²⁸Th and ¹³⁷Cs
- Low background physics runs: background model and $2\nu\beta\beta$
 - Run V (2/19-6/20) Enriched: bkg + 2νββ
 - Run VI (10/20-6/21) Depleted: bkg

Run period	Start Date	Run time (day)	Triggers
Run-Va	25-02-2019	75.8	$617,\!896$
Run-Vb	13-09-2019	47.1	412,902
Run-Vc	08-01-2020	148.7	$1,\!117,\!101$
Run-V	25-02-2019	271.6	2,147,899
Run-VI	20-10-2020	208.9	1,646,501

NEXT-White calibration and reconstruction

NEXT-100 background model components

- Detector's materials measurement campaign ongoing:
 - High resolution gamma spectroscopy: HPGe detector at LSC Radiopurity Service
 - Mass spectrometry (GDMS, ICPMS): external companies/institutions
- Angular muon flux at LSC known (arXiv:1902.00868)

NEXT-100 sensitivity

Main differences between this update and 2016's paper:

- data-like (this) vs purely MC (2016) reconstruction
- final NEXT-100 detector design (this)
- extrapolated background rate from NEXT-White (2016)

Comparison with published	This preliminary update	2016 sensitivity paper (JHEP05(2016)159)
¹³⁶ Xe mass (kg)	65 (90% enrichment)	91 (91% enrichment)
Signal efficiency (%)	21	28
Background rate (counts/year/kg/keV)	< 2.9·10 ⁻³	4.10-4
Half-life at 90% CL after 3 years	> 1.8 · 10 ²⁵ years	6.0 · 10 ²⁵ years