
205Tl, the pp neutrino flux and 205Pb/205Tl
s-process chronometry

Riccardo Mancino

Technische Universität Darmstadt
GSI Helmholtzzentrum für Schwerionenforschung

Santiago de Compostela, 26/10/2022

Riccardo Mancino EuNPC2022



205Tl � 205Pb

The half-life of 205Tl can
determine

the ν-capture rate of 205Tl
the survival of 205Pb in
s-processes scenarios
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AGB s-process

Region of interest
T < 5× 108 K
ρ < 106g/cm3

typically 107cm−3 < nn < 109cm−3
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Weak processes rates

Yokoi, Takahashi, Arnould 1985
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Experimental measurement

ASTRUm, HGF-CAS Joint Research group and E121
Collaboration at GSI have measured T1/2 for the 205Tl
bound-state β-decay.
More details in the talk of Y. Litvinov in the P2 session.

205Tl81+ produced and
stored.
T exp

1/2 (205Tl)βb =
295 ±58 d.
T exp

1/2 (205Pb)EC =
(1.73 ±0.04)× 107 y.
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Decay rate of βb-decay

The decay rate for the bound state β-decay to the K-shell is
given by

λb =
ln(2)

κ
nK CK fK

where nK is the relative vacancy of the shell,
fK = (π/2)q2

Kβ
2
K B2

K and qK = Qb + EK = 31.14 keV.
β2

K is the amplitude of the electron wave function in the nucleus
and B2

K is a parameter for the effects of electron exchange and
overlap. √

Cexp
K = 34± 5 fm
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Nuclear shape factor

Different weak processes involving the same nucleus can have
differences in their respective nuclear shape factor. In the case
of bound β-decay and νe-capture

CK = M + M(qk )

C(Wν) = M + M(Wν)

To convert the experimental result to other observables
theoretical calculations are needed and are performed within
the framework of the shell model.
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Model space and interaction

Poppelier-Kuo-Herling
(PKH) model space.
KHh interaction.
shell model code NATHAN.

First forbidden β-decays
from 205Au,205Hg, 206Hg,
206Tl and 207Tl.

Warburton 1999
Zhi et al. 2013
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FF decay operators

There are 8 linearly independent operators involved in the
description of the first-forbidden β-decay that can be collected
in five groups:

w and w’ scalar-axial
u and u’ vector-axial
x and x’ vector-vector
z tensor-axial
ξ′v recoil-axial

gA [r × σ]0

gA [r × σ]1

gV r
gA [r × σ]2

gA γ5
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Nuclear shape factor C(W)

The decay rate for the β decay can be expressed as

λif =
ln(2)

κ
f0Cα(W )

CF(W ) = B(F)
CGT(W ) = B(GT)
CFF(W ) = C(w ,w ′,u,u′, x ′x ′, ξ′v ,W )

where W is the total energy of the e− in me units.
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Averaged nuclear shape factor C(W )

f =

∫ W0

1
C(W )F (Z ,W )(W 2 − 1)1/2W (W0 −W )2dW

f0 =

∫ W0

1
F (Z ,W )(W 2 − 1)1/2W (W0 −W )2dW

C(W ) = f/f0

where W0 = (Mi −Mf )/me and F (Z ,W ) is the Fermi function.
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Normalization of the FF decay operators

q(w) = 0.64
q(u) = 0.40
q(x) = 0.53
q(z) = 0.45
q(ξ′v) = 1.27

T the
1/2(205Tl)βb = 138 d

T exp
1/2 (205Tl)βb = 295 d
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Solar ν absorption

The neutrino capture 205Tl + νe → 205Pb + e− has an energy
threshold of Eν ≥ 52 keV, by far the smallest threshold for any
known neutrino-induced nuclear reaction.

Bahcall 2005
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Solar ν absorption

The νe capture rate R in SNU (10−36 captures per target atom
per second) is obtained from the cross-section σif (Wν):

σif (Wν) =
G2

F V 2
ud (mec2)2

π(~c)4 peW F (Z ,W )C(Wν)

Ri = 1036
∑

f

∫
σif (Wν)φi(Wν)dWν

Where φi are the electron neutrino fluxes for i = pp, 7Be, 8B
Assuming an electron-neutrino survival probability of 0.54 for
pp and 7Be and 0.36 for 8B this leads to
λνe (205Tl) = 8.5× 10−35s−1.
λEC(205Pb) = 1.40× 10−15s−1

Agostini et al. 2018
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Solar ν absorption

The contributions to the capture rate in SNU for the individual
fluxes without correction for the oscillation of neutrinos are

Flux M + M M BU KSZ
Rpp 121 ±16 118 ±16 173 -
R7Be 37 ±6 33 ±6 34 -
R8B 2.6 ±0.5 2.5 ±0.5 46 -
R tot 161 ±23 154 ±23 263 [100.2, 132.4]

Bahcall and Ulrich 1988
Kostensalo, Suhonen and Zuber 2020
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S-process chronometry

The s-process production ratio of 205Pb to 204Pb is given by

N205Pb
N204Pb

∣∣∣
t>500y

= (λEC/λ)[N205(0)/N204Pb(0)]

where λ = λβb + λEC and N205 = N205Pb(0) + N205Tl(0) and
N205(0)/N204Pb(0) is almost independent on T and ne.
At the time of solidification of the meteorite τ + ∆

N205Pb
N204Pb

∣∣∣
τ+∆

=
N205Pb
N204Pb

∣∣∣
t

exp(−λter
e ∆)

λter
e τ

with τ being the entire timespan of the nucleosynthesis.

Schramm and Wasserburg 1970
Yokoi, Takahashi and Arnould 1985
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S-process chronometry

1e+06 1e+07 1e+08 1e+09
 τ  [y]

1e+06

1e+07

1e+08

1e+09

 Δ
  [

y]

ΔCrit

λEC/λ ≥ 10−3

∆ > ∆Crit ≡
−2.2× ln(4.1× 10−3τ)
N205Pb
N204Pb

∣∣∣
τ+∆

< 9× 10−5

Huey and Kohman 1972
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Summary

The measured decay rate of the bound β-decay of fully
ionized 205Tl has been used to determine the different
weak processes involving 205Tl and 205Pb.
It remains to compute the rates for a broad range of
conditions and perform s-process simulations to predict the
205Tl/205Pb ratio.
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Experimental measurement

The experiment, conducted amidst the corona pandemic, put
into use almost all of the experimental facilities at GSI:

the ion-source,
the UNILAC
(UNIversal Linear
ACcelerator),
the Heavy Ion
Synchrotron SIS-18,
the FRagment
Separator (FRS),
the Experimental
Storage Ring (ESR).
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FF decay operators

While the allowed transitions require only one operator each,
there are 9 operators involved in the description of the
first-forbidden decay and they are:

w = −gA
√

3
〈f ||
∑

k rk [Ck
1 × σk ]0tk

−||i〉√
2Ji + 1

x = −
〈f ||
∑

k rkCk
1 tk
−||i〉√

2Ji + 1

u = −gA
√

2
〈f ||
∑

k rk [Ck
1 × σk ]1tk

−||i〉√
2Ji + 1

z = 2gA
√

2
〈f ||
∑

k rk [Ck
1 × σk ]2tk

−||i〉√
2Ji + 1
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FF decay operators

w ′ = −gA
√

3
〈f ||
∑

k
2
3 rk I(1,1,1, rk )[Ck

1 × σk ]0tk
−||i〉√

2Ji + 1

x ′ = −
〈f ||
∑

k
2
3 rk I(1,1,1, rk )Ck

1 tk
−||i〉√

2Ji + 1

u′ = −gA
√

2
〈f ||
∑

k
2
3 rk I(1,1,1, rk )[Ck

1 × σk ]1tk
−||i〉√

2Ji + 1

ξ′v = −gA
√

3
M
〈f ||
∑

k [σk ×∇k ]0tk
−||i〉√

2Ji + 1

ξ′y = − 1
M
〈f ||
∑

k ∇k tk
−||i〉√

2Ji + 1
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FF decay operators

where

Clm =

√
4π

2l + 1
Ylm

with Ylm being the spherical harmonics and

I(1,1,1, r) =
3
2

[
1− 1

5

(
r
R

)2]
for 0 ≤ r ≤ R

=
3
2

[
R
r
− 1

5

(
R
r

)3]
for r ≥ R
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FF decay operators

It is however possible to obtain the matrix element of the
operator ξ′y with the following relation based on the conserved
vector current theory:

ξ′y = Eγx

where Eγx is the difference between the isobaric analog of the
initial and the final state. As Eγ > 1 this has the effect of
enhancing the matrix element of the operator x so that
ξ′y >> x .
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Operators quenching

While the shell model usually gives a good account of the
strength distributions, it usually overestimates the total strength.
For Gamow-Teller transitions, this can be accounted for
introducing an effective operator GTeff = q GT .
Since the FF decay involves operators of rank 0, 1, and 2, it is
reasonable to expect a different behaviour of between of them.
To determine these different quenching factors, a least-squares
fit was performed on the shell-model calculations for
experimentally known β-decays in the proximity of 205Tl.
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Operators quenching

Initial Final (C(W ))
1/2
theo[fm] (C(W ))

1/2
exp [fm]

205Au(3
2

+
) 205Hg(5

2
−
1 ) 18.0 20(3)

205Hg(1
2
−

) 205Tl(1
2

+

1 ) 64.5 71.3(9)
205Hg(1

2
−

) 205Tl(1
2

+

2 ) 8.6 9(3)
205Hg(1

2
−

) 205Tl(3
2

+

1 ) 11.2 17(4)
205Hg(1

2
−

) 205Tl(3
2

+

2 ) 6.2 5(1)
205Hg(1

2
−

) 205Tl(5
2

+

1 ) 1.5 1.3(3)
206Hg(0+) 206Tl(0−1 ) 11.2 17(4)
206Hg(0+) 206Tl(1−1 ) 6.2 5(1)
206Hg(0+) 206Tl(1−2 ) 1.5 1.3(3)
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Operators quenching

Initial Final (C(W ))
1/2
theo[fm] (C(W ))

1/2
exp [fm]

206Tl(0−) 206Pb(0+
1 ) 76.3 78.0(1)

206Tl(0−) 206Pb(0+
2 ) 35 31(2)

206Tl(0−) 206Pb(2+
1 ) 1.31 1.52(5)

207Tl(1
2

+
) 207Pb(1

2
−
1 ) 88.6 84.5(6)

207Tl(1
2

+
) 207Pb(3

2
−
1 ) 23.6 25.3(6)

With these constraints the quenching factors for the operators
are:

q(ξ′v) = 1.27 q(w) = q(w ′) = 0.64
q(x) = q(x ′) = 0.53 q(u) = q(u′) = 0.40

q(z) = 0.45
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Bound-state EC and βb-decay

n→ p + e− + νe.
Independent from
atomic structure

n→ p + e−b + νe.
p + e− → n + νe.

Interplay
atomic-nuclear
structure
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Nuclear shape function

In the case of neutrino absorption the nuclear shape function
takes the form of:

Cν(W ) = [M0(1,1)]2 + [m0(1,1)]2 − 2µ1γ1

W
M0(1,1)m0(1,1)

+ [M1(1,1)]2 + [m1(1,1)]2 − 2µ1γ1

W
M1(1,1)m1(1,1)

+ [M1(1,2)]2 + [M2(1,2)]2 + λ2[M1(2,1)]2 + λ2[M2(2,1)]2

where µ1 ' 1 and γ1 =
√

1− (αZ )2.
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Nuclear shape function

On the other hand, in the case of forbidden bound decay the
nuclear shape function takes the form of:

Cx = [M0(1,1) + κxm0(1,1)]2

+ [M1(1,1) + κxm1(1,1)]2

+ [M1(1,2)]2 + [M2(1,2)]2

where, since the only energetically allowed decay of the
electron can be to the K shell, κx = −1
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Nuclear momenta for βb

The nuclear matrix elements intervene in the nuclear shape
factor Cx as:

M0(1,1) = ξ′v + ξw ′ +
1
3

W0w

m0(1,1) =
1
3

mew

M1(1,1) = −ξ′y + W0x + ξ(x ′ + u′) +
1
3

(We − qx )u

m1(1,1) =
1
3

me(x + u)
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Nuclear momenta for βb

M1(1,2) = −1
3

qx (
√

2x +

√
1
2

u)

M1(2,1) = −1
3

pe(
√

2x +

√
1
2

u)

M2(1,2) = −
√

3
2

qxz

M2(2,1) = −1
3

pez

where ξ = αZ/(2R), with R the radius of the nuclear charge
distribution in units of λe.
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Nuclear momenta for ν absorption

Due to the different energetics of the transition a slight
adjustment of the nuclear momenta is needed.

M0(1,1) = ξ′v + ξw ′ +
1
3

W0w

m0(1,1) =
1
3

mew

M1(1,1) = −ξ′y + W0x + ξ(x ′ + u′) +
1
3

(We + q)u

m1(1,1) =
1
3

me(x + u)
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Nuclear momenta for ν absorption

M1(1,2) = +
1
3

q(
√

2x +

√
1
2

u)

M1(2,1) = −1
3

pe(
√

2x +

√
1
2

u)

M2(1,2) = +

√
3

2
q z

M2(2,1) = −1
3

pez

where, in contrast with the case of βb it holds that q = We + W0.
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Nuclear shape function

It is worth noting that Cx and Cν(W ) share a term C that is
independent from W :

C = [M0(1,1)]2 + [m0(1,1)]2 + [M1(1,1)]2 + [m1(1,1)]2

And in particular both Cx and Cν(W ) are dominated by the
combination of the terms [M0(1,1)]2 + [M1(1,1)]2
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