Fission decay modes of ${ }^{254} \mathrm{Fm}^{*}$ compound nucleus formed in ${ }^{16} \mathrm{O}+{ }^{238} \mathrm{U}$ reaction

and

By:

Amandeep Kaur

Postdoctoral Researcher
Department of Physics, Faculty of Science,
University of Zagreb, Bijenička c. 32,
10000 Zagreb, Croatia

Email address: akaur.phy @pmf.hr, amanganday @gmail.com

Introduction

- Importance of Nuclear fission:
$>$ Generation of energy
$>$ Stability of superheavy nuclei
$>$ Termination of the r-nucleosynthesis process
$>$ Generation of exotic nuclear isotopes that are useful in many industrial and medical applications.
- ${ }^{225} \mathbf{R a}-{ }^{228} \mathbf{A c}$ nuclei exhibit two fission modes : symmetric and asymmetric.

A. Chatillon et al., PRC 106, 024618 (2022) excitation energies between 7 and 13 MeV .

Introduction

- Importance of Nuclear fission:
$>$ Generation of energy
$>$ Stability of superheavy nuclei
$>$ Termination of the r-nucleosynthesis process
$>$ Generation of exotic nuclear isotopes that are useful in many industrial and medical applications.
- ${ }^{225} \mathbf{R a}-{ }^{228} \mathbf{A c}$ nuclei exhibit two fission modes : symmetric and asymmetric.
- Generally, actinides are known to have an asymmetric fission pattern.

K. Mahata et al., PLB 825, 136859 (2022)

Introduction

- Importance of Nuclear fission:
$>$ Generation of energy
$>$ Stability of superheavy nuclei
$>$ Termination of the r-nucleosynthesis process
$>$ Generation of exotic nuclear isotopes that are useful in many industrial and medical applications.
- ${ }^{225} \mathbf{R a}-{ }^{228} \mathbf{A c}$ nuclei exhibit two fission modes : symmetric and asymmetric.
- Generally, actinides are known to have an asymmetric fission pattern.
- The first observation of a transition from asymmetric (double humped) to symmetric spontaneous fission has been measured in the region of mass $\mathrm{A}=254-258$ of Fm isotopes.

PHYSICAL REVIEW C VOLUME16, NUMBER4 OCTOBER1977		
Distribution of mass, kinetic energy, and neutron yield in the spontaneous fission of ${ }^{\mathbf{2 5 4} \mathbf{F m} \dagger}$		
J. E. Gindler, K. F. Flynn, L. E. Glendenin, and R. K. Sjoblom Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (Received 23 May 1977)		

Introduction

- Importance of Nuclear fission:
$>$ Generation of energy
$>$ Stability of superheavy nuclei
$>$ Termination of the r-nucleosynthesis process
$>$ Generation of exotic nuclear isotopes that are useful in many industrial and medical applications.
- ${ }^{225} \mathbf{R a}-{ }^{228} \mathbf{A c}$ nuclei exhibit two fission modes : symmetric and asymmetric.
- Generally, actinides are known to have an asymmetric fission pattern.
- The first observation of a transition from asymmetric (double humped) to symmetric spontaneous fission has been measured in the region of mass $A=254-258$ of Fm isotopes.
- Similar type of observations has been seen in the case of ${ }^{254} \mathbf{E s}$ nucleus.
M. D. Usang et al., Sci. Rep. 9, 1525 (2019).

Introduction

- Importance of Nuclear fission:
$>$ Generation of energy
$>$ Stability of superheavy nuclei
$>$ Termination of the r-nucleosynthesis process
$>$ Generation of exotic nuclear isotopes that are useful in many industrial and medical applications.
- ${ }^{225} \mathbf{R a}-{ }^{228} \mathbf{A c}$ nuclei exhibit two fission modes : symmetric and asymmetric.
- Generally, actinides are known to have an asymmetric fission pattern.
- The first observation of a transition from asymmetric (double humped) to symmetric spontaneous fission has been measured in the region of mass $\mathrm{A}=254-258$ of Fm isotopes.
- Similar type of observations has been seen in the case of ${ }^{254} \mathbf{E s}$ nucleus.
M. D. Usang et al., Sci. Rep. 9, 1525 (2019).

Aim of this Work

1. To analyze the spontaneous fission decay modes of Fm isotopes.
2. To see the role of compact (side-to-side) and elongated (tip-to-tip) oriented configurations on the fission decay dynamics.
3. To investigate the possibility of multimodal fission of ${ }^{254} \mathrm{Fm}$ * nucleus formed in ${ }^{18} \mathrm{O}+{ }^{238} \mathrm{U}$ reaction.
4. To study the impact of the excitation energy E^{*} on the fission fragment mass distribution of ${ }^{254} \mathrm{Fm}$.

Methodology

Preformed cluster model [PCM $(\ell=0 \hbar, \mathbf{T}=0)$] and Dynamical cluster-decay model [DCM $(\ell \neq 0 \hbar, \mathrm{~T} \neq 0)]]$
Based on quantum mechanical fragmentation theory (QMFT), which considers mass (or charge) asymmetry coordinate as a dynamical coordinate to study the mass (or charge) transfer in a nuclear decay process, PCM and DCM approach have been developed.

Mass asymmetry parameter allows a unified description of a few-nucleon or multi-nucleon (a cluster) transfer and a large-mass transfer.

$$
\begin{array}{lll}
& \begin{array}{ll}
(|\eta|=1)
\end{array} & \text { For Complete fusion } \\
(\eta=0) & \text { For symmetric fission } \\
& \begin{array}{ll}
& \begin{array}{l}
\text { For asymmetric and super } \\
\text { asymmetric fission }
\end{array}
\end{array}
\end{array}
$$

Methodology

Preformed cluster model [PCM $(\ell=0 \hbar, T=0)$] and Dynamical cluster-decay model [DCM $(\ell \neq 0 \hbar, \mathrm{~T} \neq 0)]]$
Based on quantum mechanical fragmentation theory (QMFT), which considers mass (or charge) asymmetry coordinate as a dynamical coordinate to study the mass (or charge) transfer in a nuclear decay process, DCM approach has been developed.
$>$ Mass and charge asymmetry parameters

$>$ The deformation co-ordinates $\beta_{\lambda \mathrm{i}}(\lambda=2,3,4 .$. and $\mathrm{i}=1,2)$ fragments.
$>$ The orientation degrees of freedom $\theta_{i}(i=1,2)$ of the deformed fragments.

$>$ Relative separation (R).

$$
\begin{aligned}
& \boldsymbol{R}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}+\boldsymbol{\Delta} \boldsymbol{R} \\
& R_{i}\left(\alpha_{i}, T\right)=R_{0 i}(T)\left[1+\sum_{\lambda} \beta_{\lambda i} Y_{\lambda}^{(0)}\left(\alpha_{i}\right)\right],
\end{aligned}
$$

$$
R_{0 i}(T)=\left[1.28 A_{i}^{\frac{1}{3}}-0.76+0.8 A_{i}^{\frac{-1}{3}}\right]\left(1+0.0007 T^{2}\right) \mathrm{fm} .
$$

Compact and elongated configurations

$>$ The orientation degrees of freedom $\boldsymbol{\theta}_{i}$ ($\mathrm{i}=1,2$) of the $\boldsymbol{\beta}_{2}$-deformed fragments.

R. K. Gupta and W. Greiner et al.,
J. Phys. G: Nucl. Part. Phys. 31, 631 (2005).
Optimum orientations $\left(\theta_{1}, \theta_{2}\right)$

Deformations of colliding nuclei	Elongated configuration	Compact configuration

$\mathrm{p}^{ \pm} \mathrm{p}^{ \pm}$	$0^{\circ}, 180^{\circ}$	$90^{\circ}, 90^{\circ}$	
$\mathrm{o}^{ \pm} \mathrm{o}^{ \pm}$	$90^{\circ}, 90^{\circ}$	$0^{\circ}, 180^{\circ}$	p - prolate
$\mathrm{p}^{ \pm} \mathrm{o}^{ \pm}$	$0^{\circ}, 90^{\circ}$	$90^{\circ}, 180^{\circ}$	o - oblate
$\mathrm{o}^{ \pm} \mathrm{p}^{ \pm}$	$90^{\circ}, 180^{\circ}$	$0^{\circ}, 90^{\circ}$	s - spherical
$\mathrm{p}^{ \pm} \mathrm{s}$	$0^{\circ}, \mathrm{s}$	$90^{\circ}, \mathrm{s}$	$\pm-$ Hexadecupole
$\mathrm{o}^{ \pm} \mathrm{s}$	$90^{\circ}, \mathrm{s}$	$0^{\circ}, \mathrm{s}$	
$\mathrm{sp}^{ \pm}$	$\mathrm{s}, 180^{\circ}$	$\mathrm{s}, 90^{\circ}$	
$\mathrm{so}^{ \pm}$	$\mathrm{s}, 90^{\circ}$	$\mathrm{s}, 180^{\circ}$	

A pictorial representation of compact (a)-(c) and elongated (d)-(f) configurations for prolate (p), oblate (o), and spherical (s) shapes of nuclei.

Fragmentation potential

By using these coordinates Schrödinger equation is solved in η coordinate to find preformation probability, P_{0}

Fragmentation potential

By using these coordinates Schrödinger equation is solved in η coordinate to find preformation probability, P_{0}

Preformation probability \mathbf{P}_{0}

By using these coordinates Schrödinger equation is solved in η coordinate to find preformation probability, P_{0}

With $\quad v=0,1,2,3 \ldots$
where $(v=0)$ refers to
ground state

Fragment mass $\mathrm{A}_{i}(i=1,2)$

Spontaneous fission of Fm isotopes with mass $\mathrm{A}=\mathbf{2 4 2 - 2 6 0}$

Using PCM..

Spontaneous fission of Fm isotopes with mass $\mathrm{A}=\mathbf{2 4 2 - 2 6 0}$
 Fragment mass $\mathrm{A}_{i}(i=1,2)$

Spontaneous fission of ${ }^{\mathbf{2 5 4}} \mathbf{F m}$

Elongated configurations

A_{H}	$\beta_{2}(\mathrm{H})$	A_{L}	$\beta_{2}(\mathrm{~L})$
${ }^{128} \mathrm{Sn}(\mathrm{Z}=50, \mathrm{~N}=78)$	0.0	${ }^{126} \mathrm{Sn}(\mathrm{Z}=50, \mathrm{~N}=76)$	0.0
${ }^{134} \mathrm{Te}(\mathrm{Z}=52, \mathrm{~N}=82)$	0.0	${ }^{120} \mathrm{Cd}(\mathrm{Z}=48, \mathrm{~N}=72)$	0.024
${ }^{154} \mathrm{Nd}(\mathrm{Z}=60, \mathrm{~N}=92)$	0.048	${ }^{100} \mathrm{Zr}(\mathrm{Z}=40, \mathrm{~N}=62)$	0.064

Experimental paper
T. Banerjee et al., PRC 105, 044614 (2022)

$\widetilde{\chi}^{2}$	Mode	$\left\langle M_{H}\right\rangle(\mathrm{u})$
0.64 (mass fit)	SL	127.0^{\dagger}
1.46 (TKE fit)		
(mass fit)	S 1	134.80 ± 1.94
(TKE fit) (mass fit)	S 2	$141.95 \pm 1.80^{\dagger}$
(TKE fit)		141.95^{\dagger}
(mass fit)	S 3	154.92 ± 4.79
(TKE fit)		154.92^{\dagger}

Fission decay modes of ${ }^{254} \mathrm{Fm}$ * compound nucleus formed in ${ }^{16} \mathrm{O}+{ }^{238} \mathrm{U}$ reaction

Preliminary results calculated using DCM

The deformation parameters are also made T-dependent:

$$
\beta_{\lambda i}(T)=\exp \left(-T / T_{0}\right) \beta_{\lambda i}(0),
$$

$\beta_{\lambda i}(0)=$ static deformation
$T_{0}=1.5 \mathrm{MeV}$ at which shell effects start to vanish
M. Rashdan, A. Faessler, and W. Waida,
J. Phys. G: Nucl. Part. Phys. 17, 1401 (1991).

Compact

Elongated

Fission decay modes of ${ }^{254} \mathrm{Fm} *$ compound nucleus formed in ${ }^{16} \mathrm{O}+{ }^{238} \mathrm{U}$ reaction

Preliminary results calculated using DCM

The deformation parameters are also made T-dependent:

$$
\begin{aligned}
& \quad \beta_{\lambda i}(T)=\exp \left(-T / T_{0}\right) \beta_{\lambda i}(0) \\
& \beta_{\lambda i}(0)=\text { static deformation } \\
& T_{0}=1.5 \mathrm{MeV} \text { at which shell effects start to vanish }
\end{aligned}
$$

M. Rashdan, A. Faessler, and W. Waida,
J. Phys. G: Nucl. Part. Phys. 17, 1401 (1991).

Fission decay modes of ${ }^{254} \mathrm{Fm} *$ compound nucleus formed in ${ }^{16} \mathrm{O}+{ }^{238} \mathrm{U}$ reaction

Preliminary results calculated using DCM

Compact

Elongated

The deformation parameters are also made T-dependent:
$\beta_{\lambda i}(T)=\exp \left(-T / T_{0}\right) \beta_{\lambda i}(0)$,
$\beta_{\lambda i}(0)=$ static deformation
$T_{0}=1.5 \mathrm{MeV}$ at which shell effects start to vanish
M. Rashdan, A. Faessler, and W. Waida,
J. Phys. G: Nucl. Part. Phys. 17, 1401 (1991).

Fission decay modes of
 ${ }^{254} \mathrm{Fm}^{*}$ compound nucleus formed in ${ }^{16} \mathrm{O}+{ }^{238} \mathrm{U}$ reaction

Elongated
configuration

Identification of A_{H} and A_{L} fragments

Fission Mode	Heavy mass fission fragment $\left(\mathrm{A}_{\mathrm{H}}\right)$	Light mass fission fragment $\left(\mathrm{A}_{\mathrm{L}}\right)$
Symmetric Superlong (SL)	${ }^{127} \mathrm{Sn}\left(\mathrm{Z}_{\mathrm{H}}=50, \mathrm{~N}_{\mathrm{H}}=77\right)$ $\left(\beta_{2}=0\right)$	${ }^{127} \mathrm{Sn}\left(\mathrm{Z}_{\mathrm{L}}=50, \mathrm{~N}_{\mathrm{L}}=77\right)$ $\left(\beta_{2}=0\right)$
	${ }^{127} \mathrm{Sn}\left(\mathrm{Z}_{\mathrm{H}}=50, \mathrm{~N}_{\mathrm{H}}=78\right)$ $\left(\beta_{2}=0\right)$	$126 \mathrm{Sn}\left(\mathrm{Z}_{\mathrm{L}}=50, \mathrm{~N}_{\mathrm{L}}=76\right)$ $\left(\beta_{2}=0\right)$
Asymmetric Standard 1 (S1)	${ }^{133} \mathrm{Te}\left(\mathrm{Z}_{\mathrm{H}}=52, \mathrm{~N}_{\mathrm{H}}=81\right)$ $\left(\beta_{2}=0.001\right)$	${ }^{121} \mathrm{Cd}\left(\mathrm{Z}_{\mathrm{L}}=48, \mathrm{~N}_{\mathrm{L}}=73\right)$ $\left(\beta_{2}=0.024\right)$
Asymmetric Standard 2 (S2)	${ }^{148} \mathrm{Ce}\left(\mathrm{Z}_{\mathrm{H}}=58, \mathrm{~N}_{\mathrm{H}}=90\right)$ $\left(\beta_{2}=0.038\right)$	$106 \mathrm{Mo}\left(\mathrm{Z}_{\mathrm{L}}=42, \mathrm{~N}_{\mathrm{L}}=64\right)$ $\left(\beta_{2}=0.064\right)$
	$154 \mathrm{Nd}\left(\mathrm{Z}_{\mathrm{H}}=60, \mathrm{~N}_{\mathrm{H}}=76\right)$ $\left(\beta_{2}=0.048\right)$	$100 \mathrm{Zr}\left(\mathrm{Z}_{\mathrm{L}}=40, \mathrm{~N}_{\mathrm{L}}=60\right)$ $\left(\beta_{2}=0.064\right)$

SL= two spherical fragments ($\mathrm{Z}=50$)
S1 = one spherical heavy fragment and a deformed light fragment ($\mathrm{Z}=50, \mathrm{~N}=82$)
$\mathrm{S} 2=$ two moderately deformed fragments $(\mathrm{N}=60,88, \mathrm{Z}=38)$

Energy dependence of fission fragment mass distributions

Fusion-fission $\quad{ }^{254} \mathrm{Fm}^{*} \rightarrow \mathrm{~A}_{1}+\mathrm{A}_{2}$

A. Kaur et al., PRC 103, 034618 (2021)

Summary

$>$ Elongated configurations represent better results in terms of fission fragment mass distributions as compared to the compact orientations.
$>$ Spherical/deformed magic shell closures and the excitation energy of compound nucleus play significant role in the division of fissioning nuclei.
$>$ It would be interesting to include the pear shaped deformations in the decaying fragments to analyse the possible fission modes of ${ }^{254} \mathrm{Fm}^{*}$ and of other nuclei in this mass region. Also, the TKE of each fission mode will be investigated.

Acknowledgement

This work was supported by the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Program (Grant KK.01.1.1.01.0004).

> For more information please visit:
> http://bela.phy.hr/quantixlie/hr/ https://strukturnifondovi.hr/

The sole responsibility for the content of this presentation lies with the Faculty of Science, University of Zagreb. It does not necessarily reflect the opinion of the European Union.

Europska unija
Zajedno do fondova EU

Operativni program KONKURENTNOST I KOHEZIJA

Methodology

Penetrability (P) is calculated by using WKB method as follows:

$$
P=\exp \left[-\frac{2}{\hbar} \int_{R_{a}}^{R_{b}}\left\{2 \mu\left[V(R)-Q_{e f f}\right]\right\}^{1 / 2} d R\right]
$$

where R_{a} and R_{b} are the two turning points of WKB integral. R_{a} is defined as

$$
R_{a}=R_{1}+\mathrm{R}_{2}+\Delta R
$$

$$
R_{0 i}(T)=\left[1.28 A_{i}^{\frac{1}{3}}-0.76+0.8 A_{i}^{\frac{-1}{3}}\right]\left(1+0.0007 T^{2}\right) \mathrm{fm}
$$

In DCM, after getting Preformation and penetrability, for ℓ-partial wave analysis, the decay cross-sections for each fragmentation is defined as:

| Decay Cross-Section $(\boldsymbol{\sigma})$ in terms of
 ℓ-partial waves is given as follows: |
| :--- |$\longrightarrow \sigma\left(A_{1}, A_{2}\right)=\frac{\pi}{k^{2}} \sum_{\ell=0}^{\ell_{\text {max }}}(2 \ell+1) P_{0} P \quad \mathrm{k}=\sqrt{\frac{2 \mu E_{c . m}}{\hbar^{2}}}$

In PCM, the decay half-life $T_{1 / 2}$ and the decay constant λ are calculated as $\quad T_{1 / 2}=\frac{\ln 2}{\lambda}=\nu P_{0} P$.
v_{0} is the barrier assault frequency, calculated as $\quad v_{0}=\frac{\text { velocity }}{R_{0}}=\frac{\left(2 E_{2} / \mu\right)^{1 / 2}}{R_{0}}$

