

Contribution ID: 51

Type: Oral Contribution

Fission decay modes of 254Fm* compound nucleus formed in 16O+238U reaction

Thursday 27 October 2022 15:55 (15 minutes)

A thorough understanding of nuclear fission is still an arduous task due to its sudden transition from asymmetric to symmetric division, especially in the actinide mass region (near A=254 to 258). Recently, an attempt has been made to see the effect of compact and elongated configurations of quadrupole (β 2) deformed decay fragments on the spontaneous fission of 242-260Fm isotopes using preformed cluster model [1]. It has been observed that tip-to-tip (elongated) configuration results in the production of double-peaked (asymmetric) to triple-humped (multimodal) fission fragment mass distribution with an increase in neutron number of Fm isotopes. In the present work, Quantum mechanical fragmentation theory (QMFT) [2] based dynamical cluster-decay model (DCM) [3] is applied to analyze the possibility of multimodal fission modes of excited 254Fmcompound nucleus produced in 16O+238U nuclear reaction. The calculations are made at center-of-mass energy Ec.m. \approx 84 MeV near the Coulomb barrier by considering T-dependent β 2-deformed compact as well as elongated configurations with optimum orientations. The competitive emergence of different symmetric [symmetric superlong (SL), symmetric supershort (SS)] and asymmetric [standard 1 (S1), standard 2 (S2), standard 3 (S3), superasymmetric (SA)] fission modes has been explored by studying the fragmentation potential and multi-humped peak of preformation yield P0 of 254Fm. The division of mass and charge in nuclear fission of 254Fm* depicts the importance of spherical and deformed magic shell closures. The most energetic light (AL) and heavy (AH) decay fragments of aforementioned fission modes are identified. Moreover, the DCM-calculated fission crosssection and other depicted results show reasonable agreement with the experimental measurements of Ref. [4].

- 1. A. Kaur, N. Sharma and M. K. Sharma, Phys. Rev. C 103, 034618 (2021).
- 2. R. K. Gupta, W. Scheid, and W. Greiner, Phys. Rev. Lett. 35, 353 (1975).
- 3. B. B. Singh, M. K. Sharma, and R. K. Gupta, Phys. Rev. C 77, 054613 (2008).
- 4. T. Banerjee et al., Phys. Rev. C 105, 044614 (2022).

Primary author: Dr KAUR, Amandeep (Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia)

Co-author: Prof. KUMAR SHARMA, Manoj (School of Physics and Materials Science, Thapar Institute of Engineering and Technology, 147004 Patiala, India)

Presenter: Dr KAUR, Amandeep (Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia)

Session Classification: P2 Nuclear Structure, Spectroscopy, and Dynamics

Track Classification: P2 Nuclear Structure, Spectroscopy, and Dynamics