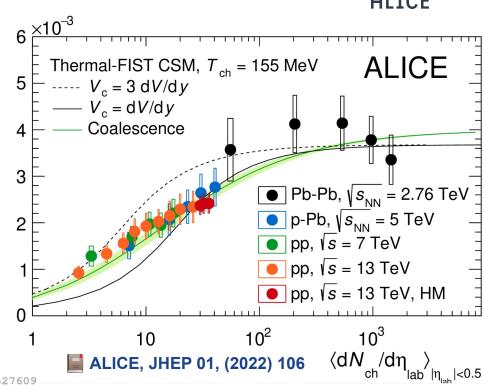


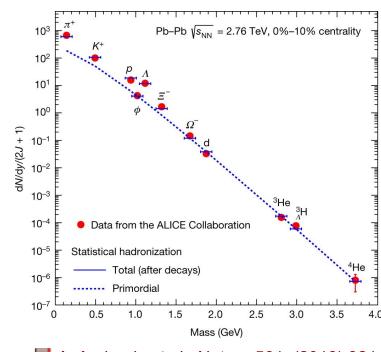
New experimental observables to probe (anti)nucleosynthesis with ALICE

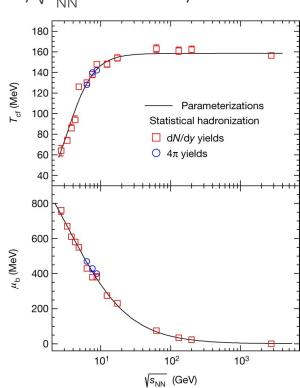
<u>Francesco Mazzaschi</u> on behalf of the ALICE Collaboration European Nuclear Physics Conference Santiago de Compostela, 27/10/22



Nuclei production at LHC: Thermal vs. Coalescence

- Nuclei production measurements in high-energy collisions
 - from low (pp,p-Pb) to high (central Pb-Pb) charged-particle multiplicity
- Two successful models describe deuteron production
 - Thermal: V. Vovchenko et al.,
 Phys. Lett. B 785, (2018) 171
 - Coalescence: K.-J. Sun et al.,
 Phys. Lett. B 792, (2019) 132



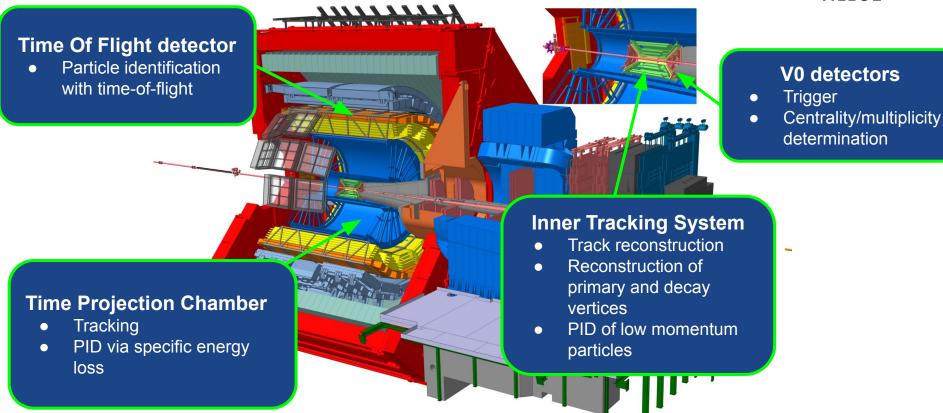

New observables required to investigate the nuclei synthesis mechanisms

Thermal model and baryon chemical potential ($\mu_{\rm R}$)

ALICE

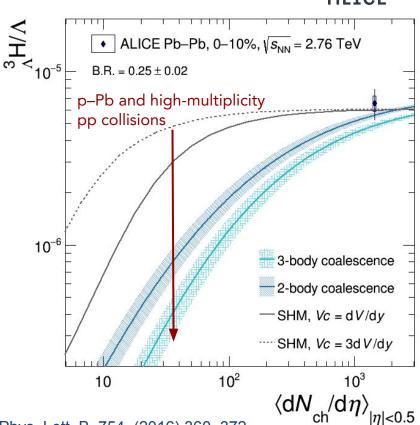
- thermal model fit of measured hadron yields in Pb–Pb collisions
 - \circ $\mu_{\rm B} \rightarrow$ measure of antimatter-matter imbalance
 - \circ $\mu_{\rm B} = 0.7 \pm 3.8 \text{ MeV } (0-5\% \text{ Pb-Pb}, \sqrt{s_{\rm NN}} = 2.76 \text{ TeV})$

New measurements of antiparticle-to-particle ratios with reduced statistical and systematic uncertainties


A. Andronic et al., Nature 561, (2018) 321

The ALICE Run 2 detector

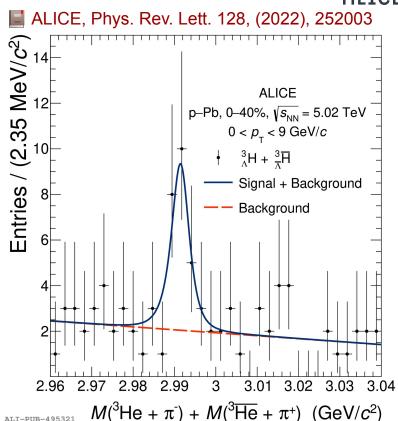
4/17


Small systems

First measurements of ³ H production in pp and p-Pb collisions

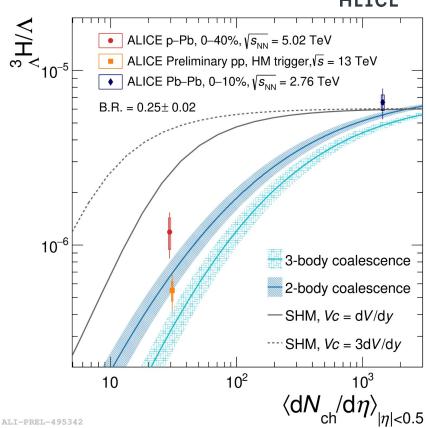
Small collision systems: ³ H synthesis

- Hypertriton (${}^3_{\Lambda}$ H):bound state of a neutron, a proton and a Λ
- Extreme weakly bound state ($B_{\Lambda} \sim 100 \text{ keV}$)
 - ³_ΛH / Λ → large separation between SHM and coalescence predictions at low charged-particle multiplicity density → coalescence relies on the radius of the particle relative to the system size while SHM does not
- ³ H production in pp and p-Pb: a key to understand the nuclear production mechanism at LHC



ALICE, Phys. Lett. B, 754, (2016) 360–372

³ H selection in pp and p-Pb collisions


- Data samples:
 - o pp at \sqrt{s} = 13 TeV and p-Pb at $\sqrt{s_{\rm NN}}$ = 5.02 TeV collisions collected during Run 2
- ³ H selection in pp: trigger on high multiplicity events using V0 detectors
 + topological cuts on triggered events
- ³ H selection in p-Pb: 40% most central collisions + BDT Classifier
- Significance $> 4\sigma$ both in pp and p-Pb

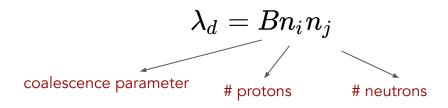
3 _{Λ}H / Λ in pp and p-Pb collisions

ALICE

- First measurements of ${}^3_\Lambda H$ production in pp and p-Pb collisions
 - good agreement with 2-body coalescence ²
 - tension with SHM at low charged-particle multiplicity density
 - $V_C = 3 dV/dy$ excluded at a level of more than 6 σ
 - First constraint to SHM possible configurations
- Coalescence quantitatively describes the ³ H suppression in small systems
 - ALICE, Phys. Rev. Lett. 128, (2022) 252003

Large systems

First measurement of antideuteron number fluctuations in Pb-Pb collisions

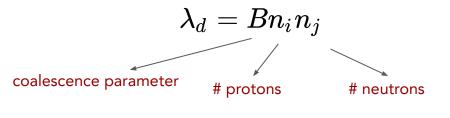

Precision measurement of baryon chemical potential $\mu_{\rm R}$ in Pb–Pb collisions

Fluctuation as a probe of synthesis

Event-by-event deuteron distribution

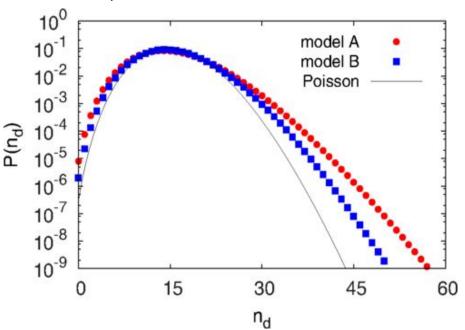
- Grand Canonical Ensemble (GCE) thermal model
 - Poisson
- Coalescence model: deviation from Poisson
 - o Average deuteron multiplicity:

Final deuteron multiplicity distribution:


$$P_d(n_d|n_i,n_j)=\lambda_d^{n_d}rac{e^{-\lambda_d}}{n_d!}=(Bn_in_j)^{n_d}rac{e^{-Bn_in_j}}{n_d!}$$

Fluctuation as a probe of synthesis

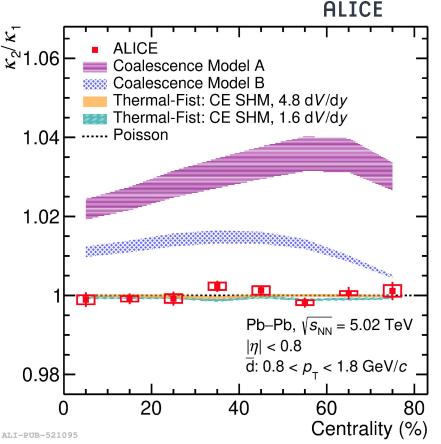
Event-by-event deuteron distribution


- Grand Canonical Ensemble (GCE) thermal model
 - Poisson
- Coalescence model: deviation from Poisson
 - Average deuteron multiplicity:

• Final deuteron multiplicity distribution:

$$P_d(n_d) = \sum_{n_i,n_j \geq n_d} P_d(n_d|n_i,n_j) P_i(n_i) P_j(n_j)$$

Model A: nucleons are correlated Model B: nucleons fluctuate independently

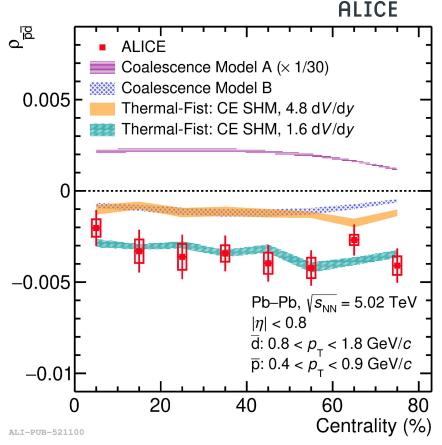

Jan Steinheimer et al., Phys. Rev. C 93, (2016) 054906

Results: κ_2 / κ_1

Cumulants:

- $\circ k_1 = < n >$
- $k_m = < (n < n >)^m >, m = 2, 3$
- $\circ \quad \text{Poisson: } k_1 = k_2 = k_3$
- κ_2 / κ_1 cumulant ratio consistent with unity
 - described by Grand Canonical SHM (Poisson)
 - overpredicted by coalescence
 - limited sensitivity to baryon number conservation of Canonical Ensemble
 - arXiv:2204.10166



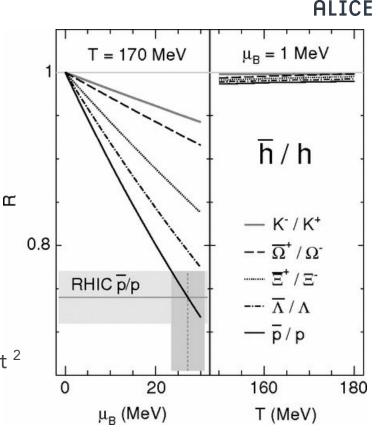


Pearson correlation:

$$ho_{a,b} = rac{\langle (n_a - \langle n_a
angle)
angle \langle (n_b - \langle n_b
angle)
angle}{\sqrt{k_{2a}k_{2b}}}$$

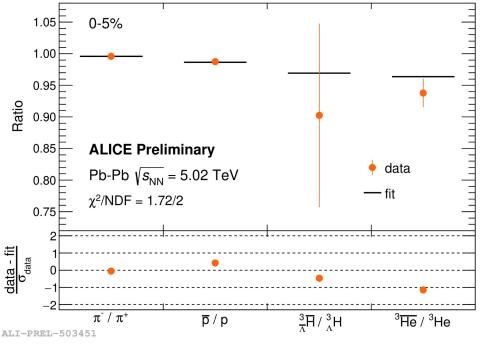
- Negative correlation between antiprotons and antideuterons
 - predicted by Canonical Ensemble thermal model with $V_C = 1.6 \text{ dV/dy}$
 - smaller correlation volume than for cumulant measurements of protons
 - qualitatively described by Model B
 - Model A ruled out

Antiparticle-to-particle ratios and $\mu_{\rm R}$


Grand Canonical Ensemble SHM ¹

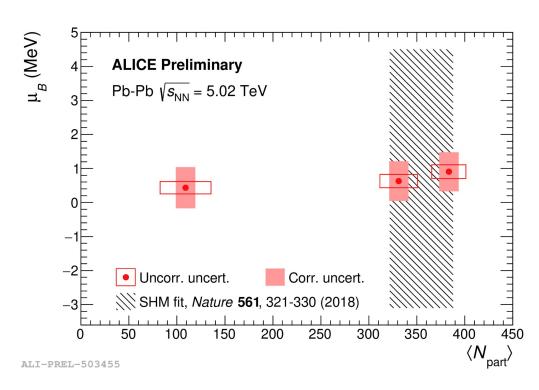
$$ar{h}/h \propto exp[-2rac{B_h\mu_b + S_h\mu_s + I_{3,h}\mu_{I_3}}{T}]$$
 baryon number strangeness strangeness component

Strangeness neutrality: $\mu_{\rm B} \sim 3\mu_{\rm s}$


$$ar{h}/h \propto exp[-2rac{(B_h+S_h/3)\mu_B+I_{3,h}\mu_{I_3}}{T}]$$

- (anti)p, ³He, ³, H
- $\pi \pm (B = S = 0)$ to constrain μ_{13}
- small dependence on temperature
 - fixed at $T = 156.2 \pm 1.5$ MeV from SHM fit ²
- sensitivity to strangeness content

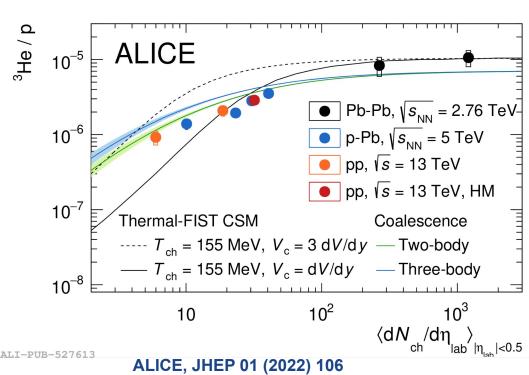
- 15/17 **ALICE**
- Statistical and uncorrelated systematic uncertainties added in quadrature
- SHM equation $\to \bar{h}/h \propto exp[-2\frac{(B_h+S_h/3)\mu_B+I_{3,h}\mu_{I_3}}{T}] \to \mu_{\rm B}$ and $\mu_{\rm I3}$ fit parameters
- Hierarchy with baryon number



- Agreement with previous studies
- O(10) improvement in precision from previous studies
 - most precise measurement in Pb–Pb at TeV scale
- Centrality dependence

o decreasing μ_B from central to semicentral collisions due to different baryon stopping **not** observed

- New measurements performed by ALICE for probing the nucleosynthesis mechanisms in hadronic collisions
 - \circ small systems: ${}^3_{\Lambda} H / \Lambda$ ratio in pp and p-Pb favours coalescence expectation
 - o large systems: antideuteron event-by-event fluctuations described by a simple Poissonian → SHM predictions
 - o large systems: precision measurements of $\mu_{\rm B}$: no evidence of centrality dependence
- precision studies of (anti)nucleosynthesis using Run 3 and Run 4 data will strongly constrain the existing models with more measurements with increased precision in all collision systems



Backup slides

³He production at LHC: Thermal vs. Coalescence

- ³He/p vs multiplicity trend well described by coalescence
- ³He/p ratio shows hint of deviation from both SHM and coalescence at intermediate multiplicity
 - coalescence is sensitive to the different source sizes parametrisation

Thermal: V. Vovchenko et al., Phys. Lett. B 785, (2018) 171 Coalescence: K.-J. Sun et al., Phys. Lett. B 792, (2019) 132