

European Nuclear Physics Conference 2022 (EuNPC 2022)

Theoretical tools in low energy nuclear structure: an update

Luis M. Robledo Universidad Autónoma de Madrid Spain

EuNPC 2022

Peter Schuck

Discuss some of the recent developments in the theoretical tools used to describe nuclear structure

Nuclear structure at a glance

Nuclear interaction

- Residual interaction of QCD
- Strongly attractive and repulsive
- Spin dependent
- Tensor
- Three, four, etc body
- Strong in-medium effects

Current approaches

- Ab-initio
 - Based on Effective Field Theory
 - Inspired by Chiral symmetry (QCD)
 - Requires RG or SRG techniques
- Effective interactions
 - Skyrme, Gogny, covariant EDF
- Shell model in configuration space
- Schematic, residual ints
- Macroscopic (Liquid drop)

Many body methods

- Mesoscopic system (≈ 100)
- Mean field driven (magic numbers)
- Spontaneous symmetry breaking
- Symmetry restoration
- Collective and single particle dof

Current approaches

- Mean field with constraints
- QRPA (pp, pn)
- Symmetry restoration (N, J, π , I, COM)
- Collective degrees of freedom
 - GCM
 - Collective hamiltonian
- Configuration interaction (MQP, ISM, MSM)
- Boson models (IBM, etc)
- Green functions,
- Coupled cluster
- SRG, perturbation theory
- ...

Where do we stand today ?

Look at last year of **Physical Review C** for new developments and/or relevant aspects of the different methods used in theoretical nuclear structure

Disclaimer: Choices based on my own taste

Interacting shell model

IN-BEAM γ -RAY SPECTROSCOPY OF ...

PHYSICAL REVIEW C 105, 034318 (2022)

FIG. 3. Level scheme of ³²Mg constructed in the present work. Placed transitions are indicated by the arrows. Tentative placements are

Given a good interaction and an appropriate configuration space the ISM is able to reproduce experimental results with an outstanding accuracy

- Kumar invariants to introduce the concept of deformation in the lab frame
- Shell model interactions from ab-initio

- Efforts to create interactions in valence spaces suited for heavy nuclei
- Exploring nuclear properties in new nuclei

Mean field, QRPA, Green functions and GCM developments

- Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional.
 Phys. Rev. C 106, 014316
- Complete solution to the inverse Kohn-Sham problem: From the density to the energy Phys. Rev. C 105, 034309
- Gamow-Teller transitions charge-exchange subtracted second random-phase approximation Phys. Rev. C 106, 014319
- Several papers implementing **FAM+QRPA** for different physical situations: Phys. Rev. C 105, 044311, Phys. Rev. C 105, 044312, Phys. Rev. C 105, 044314
- Many-body approach to superfluid nuclei in axial geometry, Phys. Rev. C 105, 044326
- **Gorkov** algebraic diagrammatic construction formalism at third order, Phys. Rev. C 105, 044330
- Microscopic description of cluster decays based on the generator coordinate method Phys. Rev. C 105, 034326
- Applications of the dynamical generator coordinate method to quadrupole excitations Phys. Rev. C 105, 064302

Mean field, QRPA, Green functions and GCM developments (2)

- Accessing the shape of atomic nuclei with relativistic collisions of isobars, Phys. Rev. C 104, L041903
- Shape of atomic nuclei in heavy ion collisions Phys. Rev. C 105, 014905
- Description of isospin mixing by a generator coordinate method Phys. Rev. C 105, 014311
- New many-body method using cluster expansion diagrams with **tensor-optimized** antisymmetrized molecular dynamics, Phys. Rev. C 105, 014317
- Angular momentum projection in the deformed relativistic Hartree-Bogoliubov theory in continuum, Phys. Rev. C 104, 064319
- Translationally invariant **matrix elements** of general one-body operators, Phys. Rev. C 104, 064322
- Nuclear landscape in a collective Hamiltonian from covariant density functional theory, Phys. Rev. C 104, 054312
- Ab initio no-core Monte Carlo shell model calculations with non local NN interactions, Phys. Rev. C 104, 054315
- Pfaffian formulation for matrix elements of three-body operators in **multiple quasiparticle configurations** Phys. Rev. C 105, 034342
- Many-body theory for quasiparticle states in superfluid fermionic systems, Phys. Rev. C 104, 044303
- Quantum many-body calculations using body-centered cubic lattices, Phys. Rev. C 104, 044304 (2021)

Symmetry restoration

The nuclear mean field often spontaneously breaks symmetries: intrinsic frame.

Symmetry restoration of spontaneously broken symmetries at the mean field level is a technique that is gaining ground in spite of still *unresolved issues with self-energies and density dependent forces*

- **Skyrme, Gogny, covariant**: Angular momentum projection, including parity, triaxiallity and cranking like states. Isospin projection.
- Shell model like configuration spaces: an avenue to approach shell model accuracy at a much lower cost (larger configuration spaces): Taurus, etc
- Technical developments to compute overlaps of operators for not closed basis: projections with finite basis
- Projection on a space domain (fission fragments)

Symmetry restoration (2)

FIG. 11. Valence space above 208 Pb.

FIG. 2. The partial experimental level scheme deduced for ¹¹⁰Cd (top) and from the BMF calculation (bottom) showing the

PHYSICAL REVIEW LETTERS 123, 142502 (2019)

Symmetry restoration (3)

- Extended **triaxial projected shell model** approach for odd-neutron nuclei Phys. Rev. C 105, 054310
- Nuclear states **projected** from a pair condensate, Phys. Rev. C 105, 034317
- Variational approximations to exact solutions in shell-model valence spaces: Systematic calculations in the sd shell, Phys. Rev. C 104, 054306
- Restoring broken symmetries for nuclei and reaction fragments Phys. Rev. C 104, 054601

Collective excitations

Combined with symmetry restoration or alone, fluctuations in collective degrees of freedom provide a convenient framework to study **collective excitations:** shape vibrations, octupole states, etc

QUADRUPOLE-OCTUPOLE COUPLING AND THE .

Work in progress

PHYSICAL REVIEW C 104, 054320 (2021)

Collective excitations

NOMURA, VRETENAR, LI, AND XIANG

PHYSICAL REVIEW C 104, 024323 (2021)

Bohr Hamiltonian including **pairing as a relevant ingredient**: Pairing strongly influence dynamics through the collective inertia

Ab-initio world

- Deformed **in-medium similarity renormalization group** Phys. Rev. C 105, L061303
- Angular-momentum projection in **coupled-cluster theory** Phys. Rev. C 105, 064311
- Natural orbitals for the ab initio no-core configuration interaction approach, Phys. Rev. C 105, 054301
- Ab initio calculation of the β decay from 11Be to a 10Be +p resonance, Phys. Rev. C 105, 054316
- Ab initio coupled-cluster calculations of ground and dipole excited states in 8 He, Phys. Rev. C 105, 034313
- Importance truncation for the in-medium similarity renormalization group, Phys. Rev. C 105, 034324
- Converged ab initio calculations of heavy nuclei Phys. Rev. C 105, 014302
- Overview of symmetric nuclear matter properties from chiral interactions up to fourth order of the chiral expansion Phys. Rev. C 104, 064312

Fission

Fission has traditionally been studied using old Bohr's idea of a deformation coordinate and a potential energy driving the dynamics. The starting point: mean field with constraints

- Shift from least energy to least action path
- Inertias and pairing
- Approximate TDHFB for fragment's properties
- Implementation of TDGCM
- Statistical modeling based on potential energies surfaces

PHYSICAL REVIEW C 105, 044313 (2022)

PHYSICAL REVIEW C 104, 044612 (2021)

Single Beta decay has been traditionally studied with pn-QRPA models assuming the same structure in parent and daughter.

- **Neutrinoless double beta** studied with **ab-initio** approaches to introduce more involved transition operators, Phys. Rev. C 106, 014315, Phys. Rev. C 106, 034309
- Standard **beta decay studied with pn-QRPA** with schematic interactions, Phys. Rev. C 105, 044314, Phys. Rev. C 106, 024306, Phys. Rev. C 105, 064315
- Fermion-boson models are gaining ground as an alternative to pn-QRPA, Phys. Rev. C 105, 044306
- GCM with beta-gamma degrees of freedom +Angular momentum projection to overcome limitations with parent and daughter having different structure, see Tomas Rodriguez talk on tuesday
- Two-neutrino double- β decay in the mapped **interacting boson model** Phys. Rev. C 105, 04430

- Covariant density functional theory with localized exchange terms, PRC 106, 034315
- Tensor interaction
 - Finite-range simple effective interaction including tensor terms, Phys. Rev. C 106, 024313
 - Role of tensor interaction as salvation of cluster structure in 44Ti Phys. Rev. C 105, 064314
- **Skyrme pseudopotentials** at next-to-next-to-leading order: Construction of local densities and first symmetry-breaking calculations, Phys. Rev. C 104, 044308

These are regular nuclei with one or several strange (charmed) barions, like Λ , Ξ , etc added in a deep 1s orbit

Studied mostly at the mean field level, the NA interaction needs to be characterized

- Phys. Rev. C 106, L012802: Hyper-heavy nuclei in a neutron-star environment
- ΛΛ pairing effects in spherical and deformed multi-Λ hyperisotopes Phys. Rev. C 105, 034322
- Skyrme force for all known <u>E- hypernuclei</u> Phys. Rev. C 104, L061307
- Ground state properties of charmed hypernuclei within a mean field approach Phys. Rev. C 104, 064306
- New effective interactions for hypernuclei in a density-dependent relativistic mean field model Phys. Rev. C 104, 05432

Machine learning

Machine learning techniques are essentially "super-interpolators" and / or "superextrapolators" The method defines a model based on neural networks is and the parameters are "taught" by trying to reproduce some given data (experimental, theoretical, etc)

- β-delayed one-neutron emission probabilities within a neural network model, Phys. Rev. C 104, 054303
- Nuclear energy density functionals from machine learning Phys. Rev. C 105, L031303
- Learning correlations in nuclear masses using neural networks
 Phys. Rev. C 105, L031306
- Machine learning approach to pattern recognition in nuclear dynamics from the ab initio symmetryadapted no-core shell model Phys. Rev. C 105, 034306

PHYSICAL REVIEW C 106, L021301 (2022)

PHYSICAL REVIEW C 105, 064306 (2022)

FIG. 1. The adjustable neural network structure with the number of hidden layers changed by n and the width of hidden layers changed by m. The output layer is the residual defined in Eq. (2).

Applications of reduced-basis methods to the nuclear single-particle spectrum

PHYSICAL REVIEW C 106, L031302 (2022)

Machine learning (2)

PHYSICAL REVIEW C 106, 014305 (2022)

LOVELL, MOHAN, SPROUSE, AND MUMPOWER

FIG. 1. Mass difference between the MDN predictions and the AME2016 (in MeV) across the nuclear chart for the six models studied in this work: (a) M2, (b) MS2, (c) MS6, (d) MS8, (e) MS10, and (f) MS12. Darker colors indicate regions of larger differences between the AME and the MDN predictions.

Quantum computers and quantum inforamtion

PHYSICAL REVIEW C 106, 034325 (2022)

PHYSICAL REVIEW C 106, 024303 (2022)

Quantum computing of the ⁶Li nucleus via ordered unitary coupled clusters

• Simulating excited states of the Lipkin model on a quantum computer Phys. Rev. C 106, 024319

VARIATIONAL APPROACHES TO CONSTRUCTING THE ...

PHYSICAL REVIEW C 105, 064308 (2022)

Accessing ground-state and excited-state energies in a many-body system after symmetry restoration using quantum computers Phys. Rev. C 105, 024324

POOJA SIWACH AND P. ARUMUGAM

FIG. 1. The quantum circuit to calculate $\mathcal{O} | \psi \rangle$, where \mathcal{O} is represented as a linear combination of unitaries (LCU) through V_p and V_s .

PHYSICAL REVIEW C 105, 064318 (2022)

FIG. 3. The quantum circuit corresponding to Hadamard test (Htest) for calculating $\text{Re}(\langle \psi | U | \psi \rangle)$.

• Solving nuclear structure problems with the adaptive variational quantum algorithm, **Phys. Rev. C 105, 064317**

Entanglement and seniority

High K isomeric states

Described as **two, four, etc quasiparticle excitations** using **selfconsistent blocking** and taking into account all time-odd fields. The "universal" Gogny force is used.

Same technique can be extended to study 0+ states

Thank you for your attention !

