Core-valence absorption in breakup and stripping reactions and its isospin dependence

M. Gómez-Ramos¹, J. Gómez-Camacho^{1,2}, A.M. Moro¹

Departamento de FAMN, Facultad de Física, Universidad de Sevilla, Av. Reina Mercedes s/n, Sevilla 2 Centro Nacional de Aceleradores, C/ Tomás Alva Edison, 7, 41092 Sevilla

October 20, 2022

- Absorption in nuclear breakup reactions
- Results
- 3 Absorption in stripping reactions
- Conclusions and outlook

- Absorption in nuclear breakup reactions
- - ${}^{12}\text{C}({}^{11}\text{Be}, n^{10}\text{Be}){}^{12}\text{C}$ at 70 MeV/A
 - ¹²C(⁴¹Ca,n⁴⁰Ca)¹²C at 70 MeV/A

Nuclear breakup reactions

- \bullet $P(c+x)+T \rightarrow c+x+T$
- All particles are detected

• Extensively used to analyze single-particle properties of nuclei, specially exotic nuclei

Continuum-discretized coupled-channels

- State-of-the-art description of low- and mid-energy breakup reactions
- 3-body approximation of the full wavefunction, expanded in discretized C - x continuum

$$\Psi \simeq \Psi^{3b}(\vec{R_{PT}}, \vec{r_{xC}}) \simeq \sum_{nJ\pi} \chi_{nJ\pi}(\vec{R_{PT}}) \phi_{nJ\pi}(\vec{r_{xC}})$$
$$\phi_{nJ\pi}(k_n, \vec{r_{xC}}) = \sqrt{\frac{2}{\pi N}} \int_{k_n}^{k_n} \phi_{nJ\pi}(k, \vec{r_{xC}}) dk$$

• Orthogonality of states used to solve equations: V_{xC} must be real

$$\sum_{nJ\pi} [(E - T - \epsilon_m) \underbrace{\langle \phi_{nJ\pi'} | \phi_{mJ\pi} \rangle}_{\delta_{nm}\delta_{J\pi J\pi'}} - \langle \phi_{nJ\pi'} | U_{xT} + U_{CT} | \phi_{mJ\pi} \rangle] \chi_{mJ\pi} = 0$$

Absorption effects

- Imaginary parts of U_{xT} and U_{CT} describe absorption between x-T and C-T
- In the continuum, the interaction between x and C can excite C or x, which can then break up, removing flux

- U_{xC} should be complex at positive energies, but then its eigenstates φ are no longer orthogonal!!!
- Binormal basis $\tilde{\varphi}$ is orthogonal to a set of non-orthogonal states φ

$$\sum_{nJ\pi} [(E - T - \epsilon_m) \underbrace{\langle \tilde{\varphi}_{nJ\pi'} | \varphi_{mJ\pi} \rangle}_{\delta_{nm} \delta_{J\pi J\pi'}} - \langle \tilde{\varphi}_{nJ\pi'} | U_{xT} + U_{CT} | \varphi_{mJ\pi} \rangle] \chi_{mJ\pi} = 0$$

$$\tilde{\varphi}_n^{(-)} \sim \varphi_n^{(+)*}$$

$$\tilde{\varphi}_i^{(-)} = \sum_i \mathcal{A}_{ij}^{-1} \varphi_j^{(+)}$$

$$\tilde{\varphi}_n^{(-)} \sim \varphi_n^{(+)*} \qquad \quad \tilde{\varphi}_i^{(-)} = \sum_j \mathcal{A}_{ij}^{-1} \varphi_j^{(+)*} \qquad \quad \mathcal{A}_{ji} = \left\langle \varphi_j^{(+)*} | \varphi_i^{(-)} \right\rangle$$

- Results

- Absorption in nuclear breakup reactions
- Results
 - $^{12}\text{C}(^{11}\text{Be}, n^{10}\text{Be})^{12}\text{C}$ at 70 MeV/A • ¹²C(⁴¹Ca,n⁴⁰Ca)¹²C at 70 MeV/A
- 3 Absorption in stripping reactions
- Conclusions and outlook

Interaction potential

- Real part: Potential from Capel et al (PRC 70, 064605 (2004)), reproduces bound states and low-energy resonance
- Imag part: Adjusted to reproduce reaction cross sections for n-9Be (compilation by A. Bonaccorso and R.J. Charity PRC 89,024619 (2014)), rescaled through $A^{2/3}$

$$W(E,r) = \frac{W_0(E)}{1 + \exp{(r - R)/a_0}} \quad W_0(E) = \frac{(a(E - E_b) + b)E^4}{E^4 + E_b^4},$$

$$\frac{\frac{800}{200}}{\frac{2}{200}} \quad \frac{\frac{\alpha}{2}}{\frac{\alpha}{200}} \quad \frac{\frac{\alpha}{2}}{\frac{\alpha}{2}} \quad \frac{\frac{\alpha}{2}}{\frac{\alpha}$$

$5/2^+$ and $3/2^+$ states

- Coulomb breakup barely affected by absorption (larger x-C distance)
- Resonances severely affected

Full cross section

- Small effect of absorption: $\sim 10\%$
- Resonance too severely affected (absorption threshold possibly too low)
- Core-excitation effects have been predicted for these data (A.M. M. and J.A. Lay PRL 109 232502 (2012)) but are not included here

- Absorption in nuclear breakup reactions
- Results
 - ${}^{12}\text{C}({}^{11}\text{Be}, n^{10}\text{Be}){}^{12}\text{C}$ at 70 MeV/A
 - \bullet $^{12}C(^{41}Ca,n^{40}Ca)^{12}C$ at 70 MeV/A
- 3 Absorption in stripping reactions
- Conclusions and outlook

$^{12}\text{C}(^{41}\text{Ca}, n^{40}\text{Ca})^{12}\text{C}$ at 70 MeV/A

- Much stronger effect: $\sim 50\%$ reduction
- Breakup of more tightly bound nucleon explores higher energies with larger absorption, and there are more open channels
- Large effect of non-orthogonality with the ground state, use of $\varphi^{(+)*}$ is not enough

Implications?

B.P. Kay et al PRL 129 152501 (2022) J. A. Tostevin and A. Gade PRC 103 054610 (2021)

• Answer to open question?

- - ${}^{12}\text{C}({}^{11}\text{Be}, n^{10}\text{Be}){}^{12}\text{C}$ at 70 MeV/A
 - ¹²C(⁴¹Ca,n⁴⁰Ca)¹²C at 70 MeV/A
- 3 Absorption in stripping reactions

Absorption in stripping

• In usual eikonal treatment uses closure to obtain a density of the bound nucleon

$$\rho(\mathbf{r_1},\mathbf{r_2}) = \phi_b^*(\mathbf{r_1})\phi_b(\mathbf{r_2}) \int \mathrm{d}\mathbf{k} \phi_{xC}^{\left(+\right)}(\mathbf{k},\mathbf{r_1})\phi_{xC}^{*\left(+\right)}(\mathbf{k},\mathbf{r_2}) = \delta(\mathbf{r_1} - \mathbf{r_2})\phi_b^*(\mathbf{r_1})\phi_b(\mathbf{r_2}) = \left|\phi_b(\mathbf{r_1})\right|^2$$

- This is only true for real, energy-independent V_{xC} .
- For absorptive potentials we can define an effective density for an average position

$$\rho^{\mathrm{eff}}(x,y) = \int \mathrm{d}\mathbf{r_1} \mathrm{d}\mathbf{r_2} \delta(x - \frac{x_1 + x_2}{2}) \delta(y - \sqrt{\frac{y_1^2 + y_2^2}{2}}) \phi_b^*(\mathbf{r_1}) \phi_b(\mathbf{r_2}) \int \mathrm{d}\mathbf{k} \phi_{xC}^{(+)}(\mathbf{k},\mathbf{r_1}) \phi_{xC}^{*(+)}(\mathbf{k},\mathbf{r_2})$$

• This ρ^{eff} can be used in standard eikonal calculations

$$\sigma_{\text{str}} = \int d\mathbf{b} \int d\mathbf{b}_{\mathbf{V}\mathbf{C}} \rho^{\text{eff}}(x, y) |S_{CT}|^2 (1 - |S_{VT}|^2)$$

Effective density

• U_{VC} : Imaginary part of Morillon potential (since we study absorption)

• Significant reduction, larger for deeply-bound nucleon

Effect on cross sections

Only computed for stripping, effect in diffraction assumed to be the same

- Small reduction in slope
- $R_s < 1$ for weakly-bound nucleons... problematic

Elastic compound scattering

- Optical potential gives finite reaction cross section at low energies for weakly-bound nucleons (But there are no open channels!!!)
- This corresponds to compound nucleus which decays to elastic channel (This is not absorption) → Must be removed from potential
- Use compound-nucleus calculation (PACE4) to estimate and remove flux to elastic

$n+^{39}\mathrm{Si}$						$p+$ $^{\circ\circ}{ m Al}$ 1. Yields of residual nuclei							
	1	. Yiel	ds of r	esidual	nuclei	Z	N		Α	events	percent	x-section(mb	
Z	N	Α	events	percent	x-section(mb)	14	25	39	Si	13	1.3%	11.8	
14	25	39 Si	1000	100%	1.7e+03	14	24	38	Si	117	11.7%	106	
		55 51				14	23	37	SI	865	86.5%	786	
TOTAL			1000	100	1700.25	14	22	36	Si	5	0.5%	4.54	
						TOT	AI .			1000	100	908.47	

 Absorption unchanged for deeply-bound nucleons but severely reduced for weakly-bound at low energies

. 39 A 1

Effective density

• U_{VC} : Imaginary part of Morillon potential (since we study absorption)

• Modification in tail (relevant for stripping)

Effect on cross sections

• Significant flattening, consistent with transfer

- - ${}^{12}\text{C}({}^{11}\text{Be}, n^{10}\text{Be}){}^{12}\text{C}$ at 70 MeV/A
 - ¹²C(⁴¹Ca,n⁴⁰Ca)¹²C at 70 MeV/A
- Conclusions and outlook

Conclusions and outlook

- An extension of CDCC to include core-valence absorption in elastic breakup reactions has been developed
- Application to ${}^{12}\text{C}({}^{11}\text{Be}, n^{10}\text{Be}){}^{12}\text{C}$ and ${}^{12}\text{C}({}^{41}\text{Ca}, n^{40}\text{Ca}){}^{12}\text{C}$ at 70 MeV/A shows larger effect when removing more deeply-bound species
- Modification of eikonal formalism for stripping to include absorption
- When correcting for proper loss of flux significant reduction in isospin dependence (consistent with transfer)
- Lots of work to do!
 - Uncertainty in VC optical potentials, more reliable (ab initio, dispersive, measurements?) are required
 - Extension to diffractive dispersion
 - Inclusion of real part of VC interaction (bound states?)
 - Go beyond eikonal (Ichimura-Austern-Vincent?)
 - Complete Gade plot
 - Momentum distributions

Acknowledgements

• External funding

- Ministerio de Ciencia e Investigación: Projects No. PID2020-114687GB-I00 and and RTI2018-098117-B-C21
- Programa Juan de la Cierva Incorporacion, IJC2020-043878-I

• Junta de Andalucía PAIDI 2020, Ref. P20-01247

