

Study of resonant states of astrophysical interest with an active target time projection chamber in FRIB

Saul Beceiro-Novo Universidade da Coruña (UDC)

- Science at the Facility for Rare Isotope Beams (FRIB)
- Solenoidal spectrometers in Active Target mode (AT-TPC)
- Track reconstruction in Active Targets: Hit pattern, clustering, fitting.
- Experimental program.
- Outlook and conclusions.

Available beams at the Facility for Rare Isotope Beams (FRIB)

- Key feature is 400 kW beam power for all ions ($8p\mu A$ or $5x10^{13}$ 238 U/s).
- Separation of isotopes in-flight provides:
 - Fast development timefor any isotope
 - Beams of all elements and short half-lives
 - Fast, stopped, andreaccelerated beams
- FRIB will provide more beam power by two-to-three orders of magnitude over existing heavy-ion facilities.

Active Target Time Projection Chambers (AT-TPC)

Active Target Time Projection Chambers (AT-TPC)

- High luminosity and large dynamic range.
- High resolution (in principle better than solid state detectors).
- Pure elemental gases.
- Cylindrical configuration: large thickness with moderate cost for electronics.
- Versatile setup for different type of reactions.
- Magnetic field enables rigidity measurement.
- Kinematics reconstruction not trivial...

Progress in Particle and Nuclear Physics Volume 114, September 2020, 103790

Novel Micropattern Gas Detectors (MPGD)

Cortesi et al., Rev. Sci. Ins. 88, 013303 (2017)

Selaris

Pulse Shape Analysis with CNN

Track reconstruction I: Hit pattern

Courtesy of J.C. Zamora and G. Fortino. U Sao Paulo

Select the proper pulse shape analysis algorithm: centroid or fit.

Multiparticle emission requires efficient peak finding algorithms.

Regions of the pad plane need different treatment: beam vs "scattered".

This also causes a difficult threshold adjustment for noise reduction (i.e. using Fourer transform).

Charge clustering along the particle trajectory is needed for the fitting stage.

Track reconstruction II: Clustering

$$\cos(\alpha) = \frac{\langle \overline{AB}, \overline{BC} \rangle}{\|\overline{AB}\| \cdot \|\overline{BC}\|} = \frac{\langle \vec{q}_j - \vec{q}_i, \vec{q}_k - \vec{q}_j \rangle}{\|\vec{q}_j - \vec{q}_i\| \cdot \|\vec{q}_k - \vec{q}_j\|}$$

$$\vec{m} = \frac{1}{3} (\vec{q}_i + \vec{q}_j + \vec{q}_k)$$
 and $\vec{e} = \frac{\vec{q}_k - \vec{q}_i}{\|\vec{q}_k - \vec{q}_i\|}$

Computer Physics Communications 235 (2019) 159-168

Track reconstruction III: Fitting

Parameters from pattern recognition are used as initial fitting parameters.

Using a Kalman Filter adapted to the AT-TPC. Widely used in HEP. Very fast!

Provides estimates of some unknown variables given the measurements observed over time.

Linear dynamical systems: Motion of charged particle in a magnetic field (4th order Runge-Kutta).

In the case of particle detectors, the trajectory is described by a state vector and a covariant matrix.

For the AT-TPC: detailed treatment of energy loss (low energy) and straggling effects are needed.

First Direct Measurement of 22 Mg(α ,p) 25 Al near the Gamow Window (2018)

J. S. Randhawa et al. Phys. Rev. Lett. 125 (2020)

- ²²Mg at 5A MeV 900 pps! (ReA3).
- Target: He+CO₂ 600 torr.
- Continuous measurement of the excitation function with a single beam energy (just counted protons)
- Study of many reactions channels simultaneously.
- Large constraint to X Ray Burst Models and neutron stars compactness.

SOLARIS commissioning ¹⁶O+⁴He ReA6 (2021)

- Search for alpha-condensate states in ¹⁶O
- A Bose-Einstein condensate in nuclei near alpha-emisión threshold.

¹²C* (Hoyle-state)+4He+4He

Accesible by Multiple Decomposition Analysis

Conclusions and outlook

- Solenoidal spectrometers in Active Target mode are powerful and unique devices for exotic nuclei spectroscopy.
- Experiment with very low intensity beams (1000 pps) and pure targets are only possible with such devices.
- These detectors are ideal to probe direct reaction at astrophysical energies.

AT-TPC Collaboration

(The ¹⁰Be sample was provided by the Paul Scherrer Institute)

