Explaining B anomalies with Planck-safe Z'

Tom Steudtner Technische Universität Dortmund University of Sussex

based on 2109.06201 in collaboration with

Gudrun Hiller, Rigo Bause, Tim Höhne, Daniel Litim

Asymptotic Safety meets Particle Physics & Friends 17.12.2021

Various hints of new physics in $b \rightarrow s\mu\mu$ decays

Obs.	Region of q^2 /	$\operatorname{Pull}_{\mathrm{SM}}$
R_{K^*}	[0.045, 1.1]	2.5σ
	[1.1, 6.0]	2.5σ
R_K	$\begin{bmatrix} 1.1, 6 \end{bmatrix}$	3.1σ

[LHCb collaboration: 1705.05802, 2103.11769]

1

Various hints of new physics in $b \rightarrow s\mu\mu$ decays

Obs.	Region of q^2 /	$\operatorname{Pull}_{\mathrm{SM}}$
R_{K^*}	0.045, 1.1	2.5σ
	[1.1, 6.0]	2.5σ
R_K	[1.1, 6]	3.1σ

[LHCb collaboration: 1705.05802, 2103.11769]

» described model-independent NP Wilson coefficients

[Bause, Gisbert, Golz, Hiller: 2109.01675]

1

C_9^{μ} \sim	\sim	$\left(ar{s}_L\gamma_ u b_L ight)\left(ar{\mu}\gamma^ u\mu ight)$
Σ^{μ}_{10} \sim	\sim	$(\bar{s}_L\gamma_ u b_L)\left(\bar{\mu}\gamma^ u\gamma^5\mu ight)$

Dim.	Fit	C_9^{μ}	C^{μ}_{10}	$\operatorname{Pull}_{\mathrm{SM}}$
1d	C_9^{μ}	-0.83 ± 0.14	0	6.0σ
1d	$C_{10}^{\mu} = -C_9^{\mu}$	-0.41 ± 0.07	$-C_9^{\mu}$	6.0σ
2d	$C^{\mu}_{9,10}$	-0.71 ± 0.17	0.20 ± 0.13	5.9σ

Various hints of new physics in $b \rightarrow s\mu\mu$ decays

Obs.	Region of q^2 /	$\operatorname{Pull}_{\mathrm{SM}}$
R_{K^*}	0.045, 1.1	2.5σ
	[1.1, 6.0]	2.5σ
R_K	[1.1, 6]	3.1σ

[LHCb collaboration: 1705.05802, 2103.11769]

[Bause, Gisbert, Golz, Hiller: 2109.01675]

» described model-independent NP Wilson coefficients

 $C_9^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \mu\right)$ $C_{10}^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \gamma^5 \mu\right)$

Dim.	Fit	C_9^{μ}	C^{μ}_{10}	$\operatorname{Pull}_{\mathrm{SM}}$
1d	C_9^{μ}	-0.83 ± 0.14	0	6.0σ
1d	$C_{10}^{\mu} = -C_9^{\mu}$	-0.41 ± 0.07	$-C_9^{\mu}$	6.0σ
2d	$C^{\mu}_{9,10}$	-0.71 ± 0.17	0.20 ± 0.13	5.9σ

 $C_{9}^{\prime\mu} \sim (\bar{s}_{R}\gamma_{\nu}b_{R}) (\bar{\mu}\gamma^{\nu}\mu) \qquad \mathbf{C}_{10}^{\prime\mu} \sim (\bar{s}_{R}\gamma_{\nu}b_{R}) (\bar{\mu}\gamma^{\nu}\gamma^{5}\mu)$

consistent with zero[Bause, Gisbert, Golz, Hiller: 2109.01675] $C_9^{\mu} = -1.07 \pm 0.17$ $C_9'^{\mu} = 0.27 \pm 0.32$ $C_{10}^{\mu} = 0.18 \pm 0.15$ $C_{10}'^{\mu} = -0.28 \pm 0.19$

can generate $R_{K^*} \neq R_K$

 $C_9^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \mu\right) \qquad C_{10}^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \gamma^5 \mu\right)$

$$C_9^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \mu\right) \qquad C_{10}^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \gamma^5 \mu\right)$$

» Model building: Leptoquarks? *Z*'models? A mix thereof ? ...

 $C_9^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \mu\right) \qquad C_{10}^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \gamma^5 \mu\right)$

» Model building: Leptoquarks? Z' models? A mix thereof ? ...

 \rightarrow light, leptophilic Z'

$$C_9^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \mu\right) \qquad C_{10}^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \gamma^5 \mu\right)$$

» Model building: Leptoquarks? Z'models? A mix thereof ? ...

 \rightarrow light, leptophilic Z'

 \rightarrow heavy Z', tree-level couplings to quarks

$$C_9^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \mu\right) \qquad C_{10}^{\mu} \sim \left(\bar{s}_L \gamma_{\nu} b_L\right) \left(\bar{\mu} \gamma^{\nu} \gamma^5 \mu\right)$$

» Model building: Leptoquarks? Z'models? A mix thereof ? ...

 \rightarrow light, leptophilic Z'

 \rightarrow heavy Z', tree-level couplings to quarks

» consistent QFT: U(1)' extension of SM gauge group

» fermions have generation-dependent charges

» Direct coupling to quarks: Z' is heavy $M_{Z'} \gtrsim 5 \text{ TeV}$ first generation quarks [CMS collaboration: 2103.02708]

» Direct coupling to quarks: Z' is heavy $M_{Z'} \gtrsim 5 \text{ TeV}$ first generation quarks [CMS collaboration: 2103.02708]

» Sizable Z' couplings required to account for $C_{9,10}^{\mu}$

$$g_L^{\mu\mu} = g_4 F_{L_2} \qquad g_R^{\mu\mu} = g_4 F_{E_2} \qquad g_L^{bs} = g_4 V_{tb} V_{ts}^* (F_{Q_3} - F_{Q_2})$$

» Direct coupling to quarks: Z' is heavy $M_{Z'} \gtrsim 5 \text{ TeV}$ first generation quarks [CMS collaboration: 2103.02708]

» Sizable Z' couplings required to account for $C_{9,10}^{\mu}$ $g_L^{\mu\mu} = g_4 F_{L_2} \qquad g_R^{\mu\mu} = g_4 F_{E_2} \qquad g_L^{bs} = g_4 V_{tb} V_{ts}^* (F_{Q_3} - F_{Q_2})$

 \rightarrow Landau poles of g_4 before the Planck scale

» e.g. *minimal* model

 $M_{Z'} \gtrsim 5 \text{ TeV}$

left muon and b-quark have U(1)' charge + gauge anomaly cancellation

Landau pole $\mu_L \lesssim 10^{10} \,\mathrm{TeV}$

» e.g. minimal model $M_{Z'} \gtrsim 5 \text{ TeV}$ left muon and b-quark have U(1)' charge + gauge anomaly cancellation Landau pole $\mu_L \lesssim 10^{10} \text{ TeV}$

» e.g. minimal model $M_{Z'} \gtrsim 5 \text{ TeV}$ left muon and b-quark have U(1)' charge + gauge anomaly cancellation Landau pole $\mu_L \lesssim 10^{10} \text{ TeV}$

Between EW and Planck scale:

» no Landau poles, couplings remain finite» parameters remain physical» scalar potential is stable

Between EW and Planck scale:

- » no Landau poles, couplings remain finite» parameters remain physical» scalar potential is stable
- \rightarrow consistent, predictive until $M_{\rm Pl}$
- "Asymptotic Safety until the Planck scale"
- \rightarrow provides additional theory constraints

» SM is **not** Planck-safe – Higgs metastability !

 \rightarrow remove Landau poles and restore Higgs stability

» SM is **not** Planck-safe – Higgs metastability !

 \rightarrow remove Landau poles and restore Higgs stability

» template BSM sector inspired by Asymptotic Safety [Litim, Sannino, JHEP 2014] ψ_i N_f vector-like fermions (charged) – "quark" S_{ij} $N_f \times N_f$ matrix-like scalars (uncharged) – "meson"

» SM is **not** Planck-safe – Higgs metastability !

 \rightarrow remove Landau poles and restore Higgs stability

» template BSM sector inspired by Asymptotic Safety [Litim, Sannino, JHEP 2014] ψ_i N_f vector-like fermions (charged) – "quark" S_{ij} $N_f \times N_f$ matrix-like scalars (uncharged) – "meson"

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right)$$

unbroken flavor symmetry

» SM is **not** Planck-safe – Higgs metastability !

 \rightarrow remove Landau poles and restore Higgs stability

» template BSM sector inspired by Asymptotic Safety [Litim, Sannino, JHEP 2014] ψ_i N_f vector-like fermions (charged) – "quark"

 S_{ij} $N_f \times N_f$ matrix-like scalars (uncharged) – "meson"

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.}\right) \qquad \qquad \frac{\mathrm{d}\alpha_{4}}{\mathrm{d} \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$
unbroken flavor symmetry

» SM is **not** Planck-safe – Higgs metastability !

 \rightarrow remove Landau poles and restore Higgs stability

» template BSM sector inspired by Asymptotic Safety [Litim, Sannino, JHEP 2014]

 ψ_i N_f vector-like fermions (charged) – "quark" S_{ij} $N_f \times N_f$ matrix-like scalars (uncharged) – "meson"

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.}\right) \qquad \qquad \frac{\mathrm{d}\alpha_{4}}{\mathrm{d} \ln\mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

- $N_f, N_c \to \infty$ exact UV fixed point (asymptotic safety)
- $N_f=3$, embed in gauge group ightarrow potentially enables Planck safety

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right) \qquad \qquad \frac{\mathrm{d}\alpha_{4}}{\mathrm{d} \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

» tame Landau poles by Yukawa interaction

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right) \qquad \qquad \frac{\mathrm{d}\alpha_{4}}{\mathrm{d} \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

» stabilize Higgs potential by scalar portals, sometimes additional Yukawas

 $\sim \delta \operatorname{Tr} \left[S^{\dagger} S \right] (H^{\dagger} H)$

» tame Landau poles by Yukawa interaction

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right) \qquad \qquad \frac{\mathrm{d}\alpha_{4}}{\mathrm{d} \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

» stabilize Higgs potential by scalar portals, sometimes additional Yukawas

 $\sim \delta \operatorname{Tr} \left[S^{\dagger} S \right] (H^{\dagger} H)$

- » enhances physics predictivity:
 - → previous work with BSM vector-like leptons [Hiller, Hormigos-Feliu, Litim, TS: Phys.Rev.D 102 (2020) 9]
 - \rightarrow simultaneous explanation for $(g-2)_{\mu,e}$

[Hiller, Hormigos-Feliu, Litim, TS: Phys.Rev.D 102 (2020) 7]

» extended gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$

» SM matter fields Q_i, U_i, D_i, L_i, E_i and Higgs H

» extended gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$

- » SM matter fields Q_i, U_i, D_i, L_i, E_i and Higgs H
- » for models with $C_{10}^{\mu} \neq 0$: right-handed neutrinos ν_i

- » extended gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$
- » SM matter fields Q_i, U_i, D_i, L_i, E_i and Higgs H
- » for models with $C_{10}^{\mu} \neq 0$: right-handed neutrinos ν_i
- » U(1)' breaking, charged scalar ϕ

- » extended gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$
- » SM matter fields Q_i, U_i, D_i, L_i, E_i and Higgs H
- » for models with $C_{10}^{\mu} \neq 0$: right-handed neutrinos ν_i
- » U(1)' breaking, charged scalar ϕ
- » Planck-Safety sector:
 - vector-like BSM fermion ψ_i
 - ${\scriptstyle \bullet}$ uncharged 3 x 3 BSM scalar S_{ij}
- » scalar portals between H, ϕ, S_{ij}

» choice:

• BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)

- » choice:
 - BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
 - Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB

» choice:

- BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
- Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB

» 6 gauge anomaly cancellation conditions for U(1)'

» choice:

- BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
- Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB
- » 6 gauge anomaly cancellation conditions for U(1)'
- » condition for each component of SM Yukawa matrices
 - diagonal quark Yukawas Y_{ii}^u, Y_{ii}^d compatible with U(1)'
 - lepton and off-diagonal CKM elements are small breaking
 - \rightarrow some models allow diagonal lepton and RHN Yukawas Y^e_{ii}, Y^{ν}_{ii}

» choice:

- BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
- Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB
- » 6 gauge anomaly cancellation conditions for U(1)'
- » condition for each component of SM Yukawa matrices
 - diagonal quark Yukawas Y_{ii}^u, Y_{ii}^d compatible with U(1)'
 - lepton and off-diagonal CKM elements are small breaking \rightarrow some models allow diagonal lepton and RHN Yukawas Y_{ii}^e, Y_{ii}^ν
- » choose CKM rotation in down-sector only
 - \rightarrow no FCNCs for up-type quarks

» choice:

- BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
- Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB
- » 6 gauge anomaly cancellation conditions for U(1)'
- » condition for each component of SM Yukawa matrices
 - diagonal quark Yukawas Y_{ii}^u, Y_{ii}^d compatible with U(1)'
 - lepton and off-diagonal CKM elements are small breaking \rightarrow some models allow diagonal lepton and RHN Yukawas Y_{ii}^e, Y_{ii}^ν
- » choose CKM rotation in down-sector only
 - \rightarrow no FCNCs for up-type quarks

» small gauge-kinetic at the electroweak scale mixing between $U(1)_Y \times U(1)'$

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0 ·	$-\frac{9}{10}$	$\frac{9}{10}$	0 -	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

» allow at least diagonal quark Yukawas

U(1)' charges and benchmark models

Model	F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}	
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

» allow at least diagonal quark Yukawas

» no Z' – electron couplings

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

- » allow at least diagonal quark Yukawas
- » no Z^{\prime} electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole
- » *U*(1)' breaking, no additional Yukawas

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole
- » U(1)' breaking, no additional Yukawas
- » EWSB without U(1)' sector

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

» pass 6 gauge anomaly cancellation conditions» allow at least diagonal quark Yukawas

- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole
- » *U*(1)' breaking, no additional Yukawas
- » EWSB without *U*(1)' sector

$$C_{9}^{\mu} \neq 0, C_{10}^{\mu} = 0 \longrightarrow BM_{1}$$
$$BM_{4}$$
$$C_{9}^{\mu} = -C_{10}^{\mu} \longrightarrow BM_{2}$$
$$C_{9,10}^{\mu} \neq 0 \longrightarrow BM_{3}$$

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$ -	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

» pass 6 gauge anomaly cancellation conditions» allow at least diagonal quark Yukawas

- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole
- » *U*(1)' breaking, no additional Yukawas
- » EWSB without U(1)' sector

$$C_9^{\mu} \neq 0, \ C_{10}^{\mu} = 0 \longrightarrow \mathbf{BM_1} \quad \begin{array}{c} \text{no right-handed} \\ \text{neutrinos} \\ \mathbf{BM_4} \quad \text{lighter } Z' \end{array}$$

$$C_9^{\mu} = -C_{10}^{\mu} \longrightarrow \mathbf{BM_2}$$

 $C_{9,10}^{\mu} \neq 0 \longrightarrow \mathbf{BM_3}$

BSM Yukawa brakes Landau pole

BSM Yukawa brakes Landau pole

scalar portal coupling stabilizes Higgs potential is stable

BSM Yukawa brakes Landau pole

scalar portal coupling stabilizes Higgs potential is stable

SM gauge couplings not trapped

BSM critical surface

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right)$$
$$-\mathcal{L}_{\text{portal}} = \delta \operatorname{Tr} \left[S^{\dagger} S \right] (H^{\dagger} H) + \tilde{\delta} (\phi^{\dagger} \phi) (H^{\dagger} H)$$

BSM critical surface

» broad decay of Z' to invisibles $Z' \rightarrow \bar{\psi}\psi$, $\bar{\nu}\nu$ with 65 ... 85% BR

Model	jets	b	t	e	μ	au	$ u_{e,\mu, au}$	h	$\psi_{1,2,3}$	ϕ
BM_1	0.5	0.5	0.5	0	15	15	15	0	54	0.2
BM_2	14	1.5	1.5	0	9	9	18	0	46	0.1
BM_3	5	0	0	0	4	4	8	0	79	0.1
BM_4	0	0.9	0.9	0	3	11	14	0	72	0.2

» broad decay of Z' to invisibles $Z' \rightarrow \bar{\psi}\psi, \bar{\nu}\nu$ with 65 ... 85% BR

Model	jets	b	t	e	μ	τ	$ u_{e,\mu, au}$	h	$\psi_{1,2,3}$	ϕ
BM_1	0.5	0.5	0.5	0	15	15	15	0	54	0.2
BM_2	14	1.5	1.5	0	9	9	18	0	46	0.1
BM_3	5	0	0	0	4	4	8	0	79	0.1
BM_4	0	0.9	0.9	0	3	11	14	0	72	0.2

» can be probed & models distinguished at $\mu\mu$ collider:

 $\sigma(\mu^+\mu^- \to Z' \to \bar{\psi}\psi, \bar{\nu}\nu) \approx (10^2 .. 10^3) \, \sigma(\mu^+\mu^- \to Z \to \bar{\nu}\nu)^{\rm SM}$

» broad decay of Z' to invisibles $Z' \rightarrow \bar{\psi}\psi$, $\bar{\nu}\nu$ with 65 ... 85% BR

Model	jets	b	t	e	μ	τ	$ u_{e,\mu, au}$	h	$\psi_{1,2,3}$	ϕ
BM_1	0.5	0.5	0.5	0	15	15	15	0	54	0.2
BM_2	14	1.5	1.5	0	9	9	18	0	46	0.1
BM_3	5	0	0	0	4	4	8	0	79	0.1
BM_4	0	0.9	0.9	0	3	11	14	0	72	0.2

» can be probed & models distinguished at $\mu\mu$ collider:

 $\sigma(\mu^+\mu^- \to Z' \to \bar{\psi}\psi, \bar{\nu}\nu) \approx (10^2 .. 10^3) \, \sigma(\mu^+\mu^- \to Z \to \bar{\nu}\nu)^{\rm SM}$

» only mildly enhanced $B \to K^{(*)} \bar{\nu} \nu$, consistent with SM expectation

» broad decay of Z' to invisibles $Z' \rightarrow \bar{\psi}\psi, \bar{\nu}\nu$ with 65 ... 85% BR

Model	jets	b	t	e	μ	τ	$ u_{e,\mu, au}$	h	$\psi_{1,2,3}$	ϕ
BM_1	0.5	0.5	0.5	0	15	15	15	0	54	0.2
BM_2	14	1.5	1.5	0	9	9	18	0	46	0.1
BM_3	5	0	0	0	4	4	8	0	79	0.1
BM_4	0	0.9	0.9	0	3	11	14	0	72	0.2

» can be probed & models distinguished at $\mu\mu$ collider:

 $\sigma(\mu^+\mu^- \to Z' \to \bar{\psi}\psi, \bar{\nu}\nu) \approx (10^2 .. 10^3) \, \sigma(\mu^+\mu^- \to Z \to \bar{\nu}\nu)^{\rm SM}$

» only mildly enhanced $B \to K^{(*)} \bar{\nu} \nu$, consistent with SM expectation

» benchmarks are consistent with LHC search [CMS collaboration: 2103.02708]

Summary

Model	μ_0	$lpha_4(\mu_0)$	C_9^{μ}	C^{μ}_{10}	$Y_{ii}^{u,d}$	Y^e_{ii}	Y_{ii}^{ν}	r_{B_s}	$\mathcal{B}(Z' \to \text{inv.})$	$ u_R$
BM_1	$5 { m TeV}$	$1.87\cdot 10^{-2}$	-0.83	0	\checkmark	\checkmark	Х	0.35	73%	Х
BM_2	$5 \mathrm{TeV}$	$5.97\cdot10^{-3}$	-0.41	$-C_9^{\mu}$	\checkmark	Х	Х	0.86	64%	\checkmark
BM_3	$5 \mathrm{TeV}$	$4.60\cdot10^{-2}$	-0.71	+0.24	\checkmark	Х	Х	0.60	87%	\checkmark
BM_4	$3 { m TeV}$	$2.46\cdot10^{-2}$	-0.83	0	\checkmark	\checkmark	\checkmark	0.70	86%	\checkmark

Summary

Model	μ_0	$lpha_4(\mu_0)$	C_9^{μ}	C^{μ}_{10}	$Y_{ii}^{u,d}$	Y^e_{ii}	Y_{ii}^{ν}	r_{B_s}	$\mathcal{B}(Z' \to \text{inv.})$	$ u_R$
BM_1	$5 { m TeV}$	$1.87\cdot 10^{-2}$	-0.83	0	\checkmark	\checkmark	Х	0.35	73%	Х
BM_2	$5 \mathrm{TeV}$	$5.97\cdot 10^{-3}$	-0.41	$-C_9^{\mu}$	\checkmark	Х	Х	0.86	64%	\checkmark
BM_3	$5 \mathrm{TeV}$	$4.60 \cdot 10^{-2}$	-0.71	+0.24	\checkmark	Х	Х	0.60	87%	\checkmark
BM_4	$3 { m TeV}$	$2.46\cdot10^{-2}$	-0.83	0	\checkmark	\checkmark	\checkmark	0.70	86%	\checkmark

heavy Z' models that

- » explain B-anomalies in several interesting NP scenarios
- » compliant with anomaly cancellation, quark Yukawas, precision measurements
- » are predictive until $M_{Pl} \rightarrow$ no Landau poles
- » stabilize the Higgs potential
- » can be probed at colliders
- » decay mostly to invisibles