SM backgrounds for VLLs

University of Sussex

Asymptotic Safety meets Particle Physics & Friends 17th December 2021

Jonas M. Lindert

Science & Technology Facilities Council

UK Research and Innovation

Singlet-model

$$pp \xrightarrow{d} \psi_i \overline{\psi}_i \rightarrow \ell_i^- \ell_i^+ \ell_j^+ \ell_j^- \ell_k^+ \ell_k^- \quad \text{for } i, j, k = 1, 2, 3$$

$$pp \rightarrow \psi_i \overline{\psi}_i \rightarrow \ell_i^- \ell_i^+ q_j \overline{q}_j \ell_k^+ \ell_k^- \quad \text{for } i, k = 1, 2$$

$$pp \rightarrow \psi_i \overline{\psi}_i \rightarrow \ell_i^- \ell_i^+ \ell_j^+ \ell_j^- \nu_k \overline{\nu}_k \quad \text{for } i, j = 1, 2$$

$$pp \rightarrow \psi_i \overline{\psi}_i \rightarrow \nu_i \ell_i^+ \ell_j^+ \ell_j^- \ell_k^- \overline{\nu}_k \quad \text{for } i, j, k = 1, 2$$

$$pp \rightarrow \psi_i \overline{\psi}_i \rightarrow \ell_i^- \overline{\nu}_i \ell_j^+ \ell_j^- \ell_k^+ \nu_k \quad \text{for } i, j, k = 1, 2$$

$$pp \rightarrow \psi_i \ell_i^+ \rightarrow \ell_i^- \ell_j^+ \ell_j^- \ell_i^+ \quad \text{for } i, j = 1, 2$$

$$pp \rightarrow \overline{\psi}_i \ell_i^- \rightarrow \ell_i^+ \ell_j^+ \ell_j^- \ell_i^- \quad \text{for } i, j = 1, 2$$

$$\begin{split} pp &\to \psi_i^0 \overline{\psi}_i^0 \to \nu_j \overline{\nu}_k \ell_j^+ \ell_i^- \ell_i^+ \ell_k^- \quad \text{for } i, j, k = 1, 2 \\ pp &\to \psi_i^- \overline{\psi}_i^0 \to \ell_i^- \ell_i^+ \overline{\nu}_j \ell_j^- \ell_k^+ \ell_k^- \quad \text{for } i, j, k = 1, 2 \\ pp &\to \psi_i^0 \psi_i^+ \to \ell_i^- \ell_i^+ \ell_j^+ \nu_j \ell_k^+ \ell_k^- \quad \text{for } i, j, k = 1, 2 \\ pp &\to \psi_i^- \overline{\psi}_i^0 \to \ell_i^- \ell_i^+ \overline{q}_j q_j \ell_k^+ \ell_k^- \quad \text{for } i, k = 1, 2 \\ pp &\to \psi_i^0 \psi_i^+ \to \ell_i^- \ell_i^+ \overline{q}_j q_j \ell_k^+ \ell_k^- \quad \text{for } i, k = 1, 2 \\ \end{split}$$

$$[Multi-lepton signatures of vector-like leptons with flavor,]$$

Bißmann, Hiller, Hormigos-Feliu, Litim, 20]

Doublet-model

Signatures for VLL's

Dominant background

ZZ / (ttV)

also: misID -> Z+jets / ttbar+jets

ZZ

Available searches: CMS-EXO-18-005

This will not be good enough with HL-LHC data samples!

Relevance of EW higher-order corrections: Sudakov logs in the tails

I. Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

Relevance of EW higher-order corrections: collinear QED radiation

exclusive observables.

important for radiative tails, Higgs backgrounds etc.

NNLO QCD

In MATRIX [Grazzini, Kallweit, Wiesemann '17] all on-shell & off-shell diboson processes pp->VV' are available

NLO EW

- •4I-DF-ZZ
- •2I-DF-WW
- •2I-SF-ZZ & 2I-SF-ZZWW & 2I-DF-WW
- 3I-DF-WZ & 3I-DF-WZ

Biedermann, Denner, Dittmaier, Hofer, Jäger; '16, '16 Biedermann, Billoni, Denner, Dittmaier, Hofer, Jäger, Salfelder; '16 Kallweit, JML, Pozzorini, Schönherr, '17 Biedermann, Denner, Hofer, '17

NNLO QCD + NLO EW

4l-SF-ZZ	$pp \to \ell^+ \ell^- \ell^+ \ell^-$	ZZ
4l-DF-ZZ	$pp \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$	ZZ
3l-SF-WZ	$pp \to \ell^+ \ell^- \ell \nu_\ell$	WZ
3l-DF-WZ	$pp \to \ell^+ \ell^- \ell' \nu_{\ell'}$	WZ
2l-SF-ZZ	$pp \to \ell^+ \ell^- \nu_{\ell'} \bar{\nu}_{\ell'}$	ZZ
2l-SF-ZZWW	$pp \to \ell^+ \ell^- \nu_\ell \bar{\nu}_\ell$	ZZ,WW
2l-DF-WW	$pp \to \ell^+ \ell'^- \nu_\ell \bar{\nu}_{\ell'}$	WW

- In Matrix+OpenLoops all (massive) diboson processes are now available at NNLO QCD + NLO EW
- [M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]
- (code available upon request)

NNLO QCD + NLO EW for dibosons: pTV2

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

- ► NNLO/NLO QCD very small at large pTV2
- NNLO QCD uncertainty: few percent

$$= d\sigma_{\rm LO} \left(1 + \delta_{\rm QCD} + \delta_{\rm EW} \right) + d\sigma_{\rm LO}^{gg}$$
$$= d\sigma_{\rm LO} \left(1 + \delta_{\rm QCD} \right) \left(1 + \delta_{\rm EW} \right) + d\sigma_{\rm LO}^{gg}$$
$$= d\sigma_{\rm NNLO QCD + EW} + d\sigma_{\rm LO} \delta_{\rm QCD} \delta_{\rm EW}$$

• difference very conservative upper bound on $\mathcal{O}(\alpha_S \alpha)$

•multiplicative/factorised combination clearly superior (EW Sudakov logs x soft QCD) •dominant uncertainty at large pTV2: $\mathcal{O}(\alpha^2) \sim \alpha_{\rm W}^2 \log^4(Q^2/M_W^2)$

- NLO QCD/LO = 30-70%
- •NNLO QCD/NLO = 10-20%
- NLO EVV = -30/-20/-20%at 2 TeV

$$= \left[d\sigma_{\rm LO}^{q\bar{q}} \left(1 + \delta_{\rm QCD}^{q\bar{q}} \right) + d\sigma_{\rm LO}^{\gamma\gamma} \right] (1 + \delta_{\rm EW}) + d\sigma_{\rm LO}^{gg}$$

$$= \frac{\delta_{\rm EW}^{q\bar{q}} d\sigma_{\rm LO}^{q\bar{q}} + \delta_{\rm EW}^{\gamma\gamma/\gamma q} d\sigma_{\rm LO}^{\gamma\gamma}}{d\sigma_{\rm LO}^{q\bar{q}} + d\sigma_{\rm LO}^{\gamma\gamma}}$$
averaged EW corr. factor

yields pathological behaviour when $\delta_{
m EW}$ is dominated by giant EW K-factors.

alternative/modified multiplicative ansatz:

$$= d\sigma_{\rm LO}^{q\bar{q}} \left(1 + \delta_{\rm QCD}^{q\bar{q}}\right) \left(1 + \delta_{\rm EW}^{q\bar{q}}\right) + d\sigma_{\rm LO}^{\gamma\gamma} \left(1 + \delta_{\rm EW}^{\gamma\gamma/q\gamma}\right) + d\sigma_{\rm LO}^{gg}$$
$$= d\sigma_{\rm NNLO\,QCD+EW} + d\sigma_{\rm LO} \delta_{\rm QCD} \,\delta_{\rm EW}^{q\bar{q}}$$

yields behaviour consistent with EW Sudakov logs

•Caveat: splitting in $q\bar{q}$ and $\gamma\gamma/\gamma q$ channels is ad-hoc/scheme dependent

- ➡check!

- •NLO QCD/LO reduced to 10-20%
- •Very small difference between additive and multiplicative QCD-EW combinations

gg-induced WW and ZZ production

- Formally same order as NNLO QCD
- Enhanced due to gg flux
- Interference with H->VV

[M. Grazzini, S. Kallweit, J.Y.Yook, M. Wiesemann; WW: '20, ZZ: '21]

NLO QCDgg

[Alioli, Ferrario Ravasio, JML, Röntsch, '21]

•ggWW/ggZZ @ NLO QCD + PS available! (VV-cont., $H \rightarrow VV \&$ interference)

Tribosons

Triboson production @ NLO QCD

- - → 'giant K-factors'
 - \rightarrow strong observable dependence
 - → NLO mandatory
- jet veto ($pT_{cut} = 50 \text{ GeV}$) reduces size and phase space dependence
 - → better: multi-jet merging

[Campanario et.al., '08]

•QCD correction driven by additional jet activity:VV+jet topologies with soft V

WWW @ NLO QCD+EW

- corrections w/o jet veto
- QCD corrections \approx 70%, slight observable dependence

• γ -induced EW corrections large and observable dependent \rightarrow large accidental cancellations with EW corrections in $q\bar{q}$ -channel

[Slide: M. Schönherr]

Dittmaier, Huss, Knippen arXiv:1705.03722

Triboson production: on-shell vs. off-shell

• at large mll and pT_{II} large interference with other resonance structures

[M. Schönherr, '18] σ/dp_T [fb/GeV] 10^{1} $d\sigma/dp_{T}$ [fb/GeV] SHERPA+RECOLA $e^{-}\mu^{+}\mu^{+}$ off-shell on-shell (BW) 10^{-2} 10^{-3} 10^{-} $e^-\mu^+\mu^+ar{ u}_e v_\mu v_\mu$ $e^{-}\mu^{+}\mu^{+}\bar{\nu}_{e}\nu_{\mu}\nu_{\mu}$ 1.8 $d\sigma/d\sigma_{off-shell}$ 0.8 0.6 1000 100 200 500 20 50 $p_{\rm T}$ [GeV] 1st lepton \mathcal{U} \mathcal{U} W^+ W^+

Off-shell VVV(3I+MET) production @ NLO EW

	inclusive			
	LO [fb]	δ_{EW}	$\delta^{\sf EW}_{qar q}$	$\delta^{\sf EW}_{q\gamma/ar q\gamma}$
$\ell^-\ell^+\ell^+$	0.4209	-2.0 %	-5.2%	3.2 %
$e^-e^+e^+$	0.0212	-3.4 %	-7.1%	3.6 %
$e^-e^+e^+ar{ u}_e u_e u_e$	0.0206	-3.4 %	-7.0 %	3.6 %
$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	0.0006	-5.4%	-9.5%	4.1 %
$e^-e^+\mu^+$	0.0938	-1.4%	-5.4%	4.1 %
$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	0.0924	-1.4%	-5.4 %	4.1 %
$e^-e^+\mu^+ar u_\mu u_\mu u_\mu$	0.0007	-2.9%	-6.1%	3.2 %
$e^-e^+\mu^+ar u_ au u_\mu$	0.0007	-2.7 %	-6.2%	3.5 %
$e^-\mu^+\mu^+$	0.0955	-2.2 %	-4.6%	2.4 %
$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	0.0955	-2.2 %	-4.6 %	2.4 %

- large accidental and cut dependent cancellations of Sudadov-type
- WWW channels receive smaller corrections than pure WZZ channels

[M. Schönherr, '18]

neg. EW corrections and γ -induced pos. contribs w/ extra jet activity

• cancellations of EW corr. in qq and q γ channels highly observable dependent

Off-shell VVV production @ NLO EW

[M. Schönherr, '18]

- Multilepton signatures dominated by VV / VVV / ttV SM backgrounds
- Upcoming large data samples will require more careful background estimates
- It will become mandatory to include higher-order QCD & EW
- Stare-of-the-art for VV at fixed-order: NNLO $QCD \times NLO EW$
- Beyond fixed-order for VV:
 - •NNLO QCD + PS
 - MEPS @ NLO QCDxEW
 - NLO QCD + EW PS
- Stare-of-the-art for VVV at fixed-order: NLO $QCD \times NLO EW$
 - off-shell calculations mandatory

Conclusions

•QCD -> giant K-factors, but NNLO often allows to reach few percent precision • EW -> large EW Sudakov corrections at large energies: several tens of percent

•Very large cancellations between EW Sudakov and photon-induced corrections

Backup

Giant K-factors and effect of jet veto

$$_{
m o}~H_{
m T}^{
m lep}$$
 corresponds to

$$=\frac{2}{3}p_{T,V_1}$$
 for $\xi_{veto} = 0.2$

PS MC: NLO QCD + EW PS[Chiesa, Re, Oleari '20]

- Missing: photon-induced channels
- Question: NLO (QCD + EW) PS (QCD + QED) / (NLO QCD PS QCD) x NLO EW ?

Available in POWHEG-BOX-RES (Resonance aware matching)

NLO (QCD + EW) PS (QCD + QED)/NLO QCD PS (QCD + QED)

NLO (QCD + EW) PS (QCD + QED)/ NLO QCD PS QCD

Parton shower Monte Carlos: NNLO QCD +PS via Mi(N)NLO_{PS} [Re, Wiesemann; Zanderighi '18]

Jet veto

 \rightarrow NNLOPS physical down to $p_T = 0$

*p***_T of dilepton system**

 \rightarrow NNLOPS cures perturbative instabilities (p_T^{miss} cut) → NNLOPS induces additional shape effects

 Currently only available for WW via MiNLO_{PS} + reweighing • Full MiNNLO_{PS} work in progress (recent results for Zy - 2010.10478)

PS MC: NNLO QCD + PS for VV via MiNNLO_{PS}

- MiNNLO_{PS} physical down to pTVV=0
- Also available for $Z\mathbf{y}$: <u>2010.10478</u> [Lombardi, Wiesemann; Zanderighi '20]

• Latest implementation does not require computationally expensive reweighting required earlier • Alternative NNLOPS approach available for ZZ in GENEVA [Alioli, Broggio, Gavardi, Kallweit, Lim, Nagar, Napoletano '21]

Triboson production calculations

NLO QCD

 on-shell fixed-order off-shell fixed-order

- on-shell matched to parton showers in SHERPA, multijet merged WWW + 0, 1j
- off-shell matched to parton showers should be available in automated tools (MG5_aMC, SHERPA+OPENLOOPS/RECOLA)

NLO EW

- on-shell known for some time
- off-shell recently computed
- no matching to parton showers available yet

[Slide: M. Schönherr]

Binoth et.al. arXiv:0804.0350 Campanario et.al. arXiv:0809.0790 \rightarrow available in aut. tools (MG5_aMC, SHERPA+OPENLOOPS/RECOLA) Höche et.al. arXiv:1403.7516

Yong-Bai et.al. arXiv:1605.00554 Dittmaier, Huss, Knippen arXiv:1705.03722

MS arXiv:1806.00307