

Planck-safe BSM with Vector-like Quarks

soon on arxiv

in collaboration with G. Hiller, D. Litim, T. Steudtner

Tim Höhne

TU Dortmund Theoretical Physics Department IV

December 17, 2021

Tim Höhne (TU Dortmund)

Outline

- **3** RG Analysis
- **4** SMEFT Analysis
- **5** Phenomenology

6 Conclusion

Introduction

Higgs potential metastable ($\alpha_{\lambda} < 0$) at 10¹⁰ - 10²⁹ GeV [1307.3536]
 Hypercharge Landau pole at 10⁴¹ GeV

Tim Höhne (TU Dortmund)

Planck Safety

RG Running of all couplings up to $M_{\rm Pl} \sim 10^{19}$ GeV without

- Landau poles
- Vacuum instabilities (especially Higgs)
- non-perturbative couplings

Planck Safety

RG Running of all couplings up to $M_{\rm Pl} \sim 10^{19}$ GeV without

- Landau poles
- Vacuum instabilities (especially Higgs)
- non-perturbative couplings

 \Rightarrow Constraints on model parameters *independent* from experimental data

very promising concept for BSM model building!

[1702.0172, 1910.14062, 2008.08606, 2011.12964]

Planck Safety

RG Running of all couplings up to $M_{\rm Pl} \sim 10^{19}$ GeV without

- Landau poles
- Vacuum instabilities (especially Higgs)
- non-perturbative couplings

 \Rightarrow Constraints on model parameters *independent* from experimental data

very promising concept for BSM model building!

[1702.0172, 1910.14062, 2008.08606, 2011.12964]

How can Planck safety be realized?

Model

Tim Höhne (TU Dortmund)

Setup

- ► N_F vector-like fermions ψ_i and N_F^2 uncharged scalars \hat{S}_{ij} [1406.2337] ⇒ Avoids gauge anomalies ⇒ Natural Dirac mass term ⇒ $N_F = 3$ connects SM and BSM flavor
- Past: Successfull models with VLLs [2008.08606, 2011.12964] (→ talk by S. Bißmann)

Setup

- ► N_F vector-like fermions ψ_i and N_F^2 uncharged scalars \hat{S}_{ij} [1406.2337] ⇒ Avoids gauge anomalies ⇒ Natural Dirac mass term ⇒ $N_F = 2$ connects SM and BSM flavor
 - $\Rightarrow N_F = 3$ connects SM and BSM flavor
- Past: Successfull models with VLLs [2008.08606, 2011.12964] (→ talk by S. Bißmann)
- ▶ Now: Study models with VLQs! ⇒Focus on two rep. under $U(1)_Y \times SU(2)_L \times SU(3)_C$:

Model I: $\psi = (-\frac{5}{6}, 2, 3)$ Model II: $\psi = (\frac{7}{6}, 2, 3)$

Set New Physics scale to µ₀ = 1 TeV ⇒Accessible at colliders (→ talk by J. Erdmann)

Model

Model Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y^{\text{BSM}} + \mathcal{L}_Y^{\text{portal}} + \mathcal{L}_V$$

$$-\mathcal{L}_Y^{\text{BSM}} = \hat{y}_{ij} \bar{\psi}_{Li} \hat{S}_{ij} \psi_{Rj} + \text{h.c.}$$

$$-\mathcal{L}_Y^{\text{portal}} = \begin{cases} \hat{\kappa}_{ij} \overline{\psi}_{Li} H^c D_j + \text{h.c.} & (\text{Modell I}) \\ \hat{\kappa}_{ij} \overline{\psi}_{Li} H U_j + \text{h.c.} & (\text{Model II}) \end{cases}$$

$$\hat{\psi}_{Li} \qquad \hat{\psi}_{Li} \qquad$$

Flavor Symmetries & Splitting

A priori huge flavor symmetry $\mathcal{G}_{F} = U(3)_{q}^{3} \otimes U(3)_{\ell}^{2} \otimes U(3)_{\psi}^{2} \otimes U(3)_{5}^{2}$ $\Rightarrow broken by Yukawa couplings (\rightarrow Details in Backup)$ $\blacktriangleright \text{ non-negligible } y_{t}, y_{b} \text{ break } U(3)_{q}^{3} \rightarrow U(2)_{q}^{3} \times U(1)_{q}^{3}$

Flavor Symmetries & Splitting

A priori huge flavor symmetry $\mathcal{G}_F = U(3)^3_{\sigma} \otimes U(3)^2_{\ell} \otimes U(3)^2_{\sigma} \otimes U(3)^2_{\sigma}$ \Rightarrow broken by Yukawa couplings (\rightarrow Details in Backup) • non-negligible y_t , y_b break $U(3)^3_a \rightarrow U(2)^3_a \times U(1)^3_a$ ▶ 3rd gen. BSM fields & couplings separated from first two gen. $\hat{y}
ightarrow egin{pmatrix} y & y & 0 \ y & y & 0 \ 0 & 0 & \widetilde{y} \end{pmatrix}, \qquad \hat{\kappa}
ightarrow \mathsf{diag}(\kappa,\kappa,\widetilde{\kappa})$ Four independent scalar fields: $\hat{S} = \begin{pmatrix} S_{2\times 2} & \phi_{L_{1\times 2}} \\ \phi_{R_{2\times 1}} & \varphi_{1\times 1} \end{pmatrix}$ \Rightarrow Decouple $\phi_{L/R}$ to reduce complexity

RG Analysis

BSM Critical Surface (Model I)

Planck Safety: Results

• Subplanckian hypercharge Landau pole for feeble coupligs \Rightarrow Yukawas are unique key to tame pole [1608.00519] \Rightarrow 10⁻¹ $\lesssim \alpha_{y,\widetilde{y}}|_{1 \text{ TeV}} \lesssim 1$ \Rightarrow high multiplicity, little effect on α_{λ}

• Model II:
$$\alpha_{\widetilde{\kappa}}|_{1 \text{ TeV}} \gtrsim 1.5 \cdot 10^{-1}$$

All quartics can be chosen feebly

Planck Safety: Results

• Subplanckian hypercharge Landau pole for feeble coupligs \Rightarrow Yukawas are unique key to tame pole [1608.00519] \Rightarrow 10⁻¹ $\lesssim \alpha_{y,\widetilde{y}}|_{1 \text{ TeV}} \lesssim 1$ \Rightarrow high multiplicity, little effect on α_{λ}

• Model II:
$$\alpha_{\widetilde{\kappa}}|_{1 \text{ TeV}} \gtrsim 1.5 \cdot 10^{-1}$$

All quartics can be chosen feebly

⇒Planck safety increases predictivity!

SMEFT Analysis

Matching

Model-independent SMEFT analysis: $\mathcal{L}_{SMEFT}^{(6)} = \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}$ [1008.4884] \Rightarrow Compute NP Wilson coefficients C_{i} in our model! [1711.10391]

Matching

Model-independent SMEFT analysis: $\mathcal{L}_{\text{SMEFT}}^{(6)} = \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}$ [1008.4884] \Rightarrow Compute NP Wilson coefficients C_i in our model! [1711.10391]

$$\mathcal{O}_{Hq}^{ij} = i \left[(H^{\dagger} D_{\mu} H) - (D_{\mu} H)^{\dagger} H \right] (q_R^i \gamma^{\mu} q_R^j),$$

We induce $\mathcal{O}_{qH}^{ij} = (H^{\dagger} H) (\bar{Q}^i H^{[c]} q_R^j),$
 $\mathcal{O}_{H\Box} = (H^{\dagger} H) \partial^{\mu} \partial_{\mu} (H^{\dagger} H),$

$$\begin{split} \mathcal{O}^{ij}_{\boldsymbol{q}H} &= (H^{\dagger}H)(\bar{Q}^{i}H^{[c]}\boldsymbol{q}^{j}_{R}),\\ \mathcal{O}_{H\Box} &= (H^{\dagger}H)\partial^{\mu}\partial_{\mu}(H^{\dagger}H),\\ \mathcal{O}_{H} &= (H^{\dagger}H)^{3} \end{split}$$

with
$$\frac{C_{Hq}^{ij}}{\Lambda^2} = \xi_q 8\pi^2 \frac{\alpha_{\hat{k}_i}}{M_{F_i}^2} \delta_{ij}, \qquad \frac{C_{qH}^{ij}}{\Lambda^2} = 8\pi^2 Y_{ji}^{q*} \frac{\alpha_{\hat{k}_j}}{M_{F_i}^2}$$

where $\xi_q = -1$ [+1] for $q = d$ [u] in Model I [II]

Constraints

Global SMEFT fits [1606.06693, 1911.07866, 2012.02779] \Rightarrow Bounds on WCs (in particular on $C_{aH,Ha}^{33}$)

• Constraints on model paramters \Rightarrow In particular upper limits on $\frac{\alpha_{\widetilde{k}}}{M^2}$!

Complemetary to Planck safety constraints

Constraints

Global SMEFT fits [1606.06693, 1911.07866, 2012.02779] \Rightarrow Bounds on WCs (in particular on $C_{aH,Ha}^{33}$)

- Constraints on model paramters \Rightarrow In particular upper limits on $\frac{\alpha_{\tilde{\kappa}}}{M^2}$!
- Complemetary to Planck safety constraints \Rightarrow Model I: V⁺ possible for $M_F \approx 1$ TeV \checkmark

Constraints

Global SMEFT fits [1606.06693, 1911.07866, 2012.02779] \Rightarrow Bounds on WCs (in particular on $C_{qH,Hq}^{33}$) \blacktriangleright Constraints on model paramters \Rightarrow In particular upper limits on $\frac{\alpha_{\tilde{K}}}{M_F^2}$! \triangleright Complemetary to Planck safety constraints \Rightarrow Model I: V⁺ possible for $M_F \approx 1$ TeV \checkmark Model II: excluded for $M_F < 2.3$ (3.2) TeV! \checkmark \Rightarrow Beyond collider limits ($M_F \lesssim 1.2 - 1.5$ TeV) [1806.01762,1807.11883]

Focus on Model I for phenomenological analysis

Phenomenology

BSM Sector Production

BSM Fermion Decays

After EWSB ψ splinters into (ψ^{-1/3}, ψ^{-4/3})^T
Exotic ψ^{-4/3} decays exclusively via mixing as ψ^{-4/3} → dW⁻
ψ^{-1/3} decays to dZ, dh, uW and if M_F > M_Ŝ to dŜ
ψ decays are prompt unless α_κ ≤ O(10⁻¹⁴)

Fermionic Branching Ratios

ψ₃^{-1/3} → tW strongly suppressed by tiny LH mixing ⇒negligible
 B(ψ₃^{-1/3} → bH) ≈ B(ψ₃^{-1/3} → bZ)
 If open, ψ₃^{-1/3} → bφ dominant for M_F ≈ 1 TeV

Collider bounds

From running of the strong coupling constant $\Rightarrow M_F \gtrsim 700 \text{ GeV} \text{ (from 139 fb}^{-1} \text{ at } \sqrt{s} = 13 \text{ TeV} \text{ [ATLAS-CONF-2020-025]}$ $(\rightarrow Details \text{ in Backup})$

- From pair production of exotic VLQs $\Rightarrow M_{F,3} \gtrsim 1350 \text{ GeV}$ (from 36.1 fb⁻¹ at $\sqrt{s} = 13 \text{ TeV}$) [1707.03347]
- ▶ Bounds on $\frac{\alpha_k}{M_F^2}$ from mixing (single production, W/Z/H-couplings) ⇒Similar to SMEFT bounds ⇒Compatible with Planck safety bounds

BSM Scalar Decays

• Physical d.o.f. are (pseudo-)scalar components of \hat{S}

• Decay as
$$\hat{S}_{ij}
ightarrow ar{d}_i d_j, \, ar{\psi}_i^{1/3} d_j, \, ar{d}_i \psi_j^{-1/3}, \, ar{\psi}_i \psi_j$$

• \hat{S}_{ii} also decay via triangle loops to two gauge bosons $\Rightarrow \hat{S}_{ii} \rightarrow gg$ strongly dominates over $\hat{S}_{ii} \rightarrow ZZ, \gamma\gamma, WW, Z\gamma$

Conclusion

Conclusion

SM + 3 gen. of VLQs $\psi_i = (-\frac{5}{6}/\frac{7}{6}, 2, 3)$ and flavorful singlet scalar \hat{S}_{ij}

- ▶ Planck safety constrains Yukawas: $\alpha_{y,\tilde{y}}|_{\mu_0} \gtrsim 10^{-1}$ ⇒SMEFT fit combination: Model II excluded for $M_F \lesssim 3$ TeV
- ▶ Phenomenological analysis Model I ⇒Strongest VLQ mass bound (collider searches): $M_F \gtrsim 1350$ GeV ⇒Mixing bounds on $\alpha_{\hat{\kappa}}$ in agreement with Planck safety bounds ⇒Dominant decay channels: $\psi^{-4/3} \rightarrow dW^ \psi^{-1/3} \rightarrow dZ$, dH[, dS] [if kinematically open]
 - $\hat{\mathcal{S}}_{ij(ii)} ~
 ightarrow [ar{\psi}\psi](,\, gg)$ [if kinematically open]

BACKUP

Backup

Flavor Symmetry Breaking

$$\mathcal{G}_F = U(3)^3_q \otimes U(3)^2_\ell \otimes U(3)^2_\psi \otimes U(3)^2_5$$

• \hat{y} identifies $U(3)_S^2$ with $U(3)_{\psi}^2$

- ▶ BSM fermion mass term identifies $U(3)_{\psi_L}$ with $U(3)_{\psi_R}$
- $\hat{\kappa}$ identifies $U(3)_{\psi_L}$ with $U(3)_D (U(3)_U)$ in Model I (II)
- y_t, y_b break $U(3)^3_q \rightarrow U(2)^3_q \times U(1)^3_q$

\Rightarrow Breaking of $U(3)_q^3$ propogates through the whole BSM sector

Vacuum Stability

 $\mathcal{L}_{V} = \lambda (H^{\dagger}H)^{2} + s (\phi^{\dagger}\phi)^{2} + u \operatorname{Tr}(S^{\dagger}SS^{\dagger}S) + v \operatorname{Tr}(S^{\dagger}S) \operatorname{Tr}(S^{\dagger}S)$ $+\delta(H^{\dagger}H)\operatorname{Tr}(S^{\dagger}S)+\widetilde{\delta}(H^{\dagger}H)(\phi^{\dagger}\phi)+w(\phi^{\dagger}\phi)\operatorname{Tr}(S^{\dagger}S).$ Scalar potential has to be bounded from below! ⇒Vacuum stability conditions: [1501.03061, 1205.3781] $\lambda > 0,$ $\Delta > 0.$ s > 0. $\delta' = \delta + 2\sqrt{\lambda\Delta} > 0, \quad \widetilde{\delta}' = \widetilde{\delta} + 2\sqrt{\lambda s} > 0, \quad w' = w + 2\sqrt{s\Delta} > 0.$ $2\sqrt{\lambda\Delta s} + \delta\sqrt{s} + \tilde{\delta}\sqrt{\Delta} + w\sqrt{\lambda} + \sqrt{\delta'\tilde{\delta}'}w' > 0$ where $\Delta = \begin{cases} \frac{u}{2} + v > 0 & \text{for } u > 0 & (V^+) \\ u + v > 0 & \text{for } u < 0 & (V^-) \end{cases}$

Backup

BSM Critical Surface (Model I)

Planck-safe RG Running (Model II) 1 $\alpha_{y,\widetilde{y}}$ 10^{-1} α_{λ} α_s $\alpha_v \alpha_t$ 10^{-2} α_u α_3 α_2 10^{-3} $|\alpha_w|$ α $\alpha_{\kappa,\widetilde{\kappa}}$ 10^{-4} $|\alpha_{\delta,\widetilde{\delta}}|$ 10^{-5} $10^{\frac{1}{3}}$ $10^{\overline{13}}$ 10¹⁵ 10⁵ 10⁷ 10⁹ 10^{11} 10^{17} 10¹⁹ 10^{21} μ/GeV

Backup

BSM Critical Surface (Model II)

Fermionic Mixing

Mixed Higgs Yukawa coupling κ induces off-diagonal mass term

$$-\mathcal{L}_{\text{mass}} = \begin{pmatrix} d_L \\ \psi_L^{-1/3} \end{pmatrix}_i^{\dagger} \begin{pmatrix} \frac{\nu}{\sqrt{2}} Y_d & 0 \\ \frac{\nu}{\sqrt{2}} \hat{\kappa} & M_F \end{pmatrix}_{ij} \begin{pmatrix} d_R \\ \psi_R^{-1/3} \end{pmatrix}_j + \text{h.c.}$$

• Mass eigenstates $(d', \psi'^{-1/3})$ are admixtures of gauge eigenstates $\Rightarrow \theta_R = \frac{\kappa}{\sqrt{2}} \frac{v}{M_F}, \ \theta_L = \frac{\kappa}{2} Y_d \frac{v^2}{M_F^2} \Rightarrow \theta_L \ll \theta_R$

• Modified and new mixed couplings of $(d', \psi'^{-1/3})$ to h, Z, W

Mixing bounds

- ► Single production collider searches (for $M_F = 1400 \text{ GeV})_{[1812.07343]}$ $\alpha_{\widetilde{\kappa}} \lesssim 2.4 * 10^{-2}$
- Shift in down-type quark Z-couplings due to mixing [PDG 2020]

$$lpha_{\hat{\kappa}} \lesssim 1.6 * 10^{-2} \left(rac{M_F}{ ext{TeV}}
ight)^2$$

Off-diagonal mixing causes tree-level FCNCs
 very strong bounds from neutral kaon oscillations

technische universität dortmund

Backup

$\alpha_{\textit{s}}$ Running

Backup

Mass bounds

Tim Höhne (TU Dortmund)