ATLAS Computing for HL-LHC

NorCC workshop 15 Sept 2022

David Cameron (University of Oslo) Thanks to James Catmore, Alessandro Di Girolamo and Zach Marshall for material

Projected evolution of resource usage from 2020 until 2036

Conservative (blue) and aggressive (red) R&D scenarios. The grey hatched shading between the red and blue lines illustrates the range of resources consumption if the aggressive scenario is only partially achieved. The black lines indicate the impact of sustained year-on-year budget increases, and improvements in new hardware, that together amount to a capacity increase of 10% (lower line) and 20% (upper line). The vertical shaded bands indicate periods during which ATLAS will be taking data.

The road to HL-LHC

2020: LHCC decided to perform a series of reviews of the Software and Computing plans of the LHC experiments towards HL-LHC

The <u>ATLAS HL-LHC Computing Conceptual</u> <u>Design Report</u> was published in May 2020

A follow up <u>ATLAS Software and Computing</u> <u>HL-LHC Roadmap</u> was published in March 2022 with concrete milestones

With a view to a TDR in ~2024

ATLAS Software and Computing HL-LHC Roadmap

Reference:

Created: 1 October 2021 Last Modified: 22 February 2022 Prepared by: The ATLAS Collaboration

© 2022 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license

Milestones

tasets (data and MC) used for physics analysis.

21 2025

The roadmap defines a set of milestones per activity area: Maintenance and Operations: essential just to get by Conservative R&D: new developments achievable with current effort Aggressive R&D: new developments requiring extra effort

Themes: infrastructure changes

- Some infrastructure evolution is out of our hands, but we have control over other parts
 - Token transition (authentication using tokens instead of X.509 certificates): probably the biggest change in distributed computing since its beginning
 - Database evolution: related to Oracle licensing changes
 - Analysis facilities: new paradigms for data analysis (see later)
 - High Performance Computing (HPC)
 - Operating systems evolution
 - Network growth
 - Storage protocols

Distributed Computing					
M	ID	DID	Description	Due	
D	C-1		Transition to tokens	Q4 2025	
	1.	1	Submission from Harvester to all HTCondor CEs with tokens	Q1 2022	
	1.3	2	All users move from VOMS to IAM for X509	Q4 2022	
	1.3	3	All job submission and data transfers use tokens	Q4 2025	
D	C-2		Storage evolution	Q4 2025	
	2.	1	No GridFTP transfers at any site	Q1 2022	
	2.1	2	SRM-less access to tape	Q4 2025	
	2.3	3	Recommended transition plan from DPM completed	Q4 2021	
	2.4	4	Transition plan from all DPM sites	Q4 2022	
	2.	5	All sites moved away from DPM	Q2 2024	
D	C-3		Next operating system version	Q2 2024	
	3.	1	Ability to run on "future OS" on grid sites	Q4 2022	
	3.	2	Central services moved to "future OS"	Q4 2023	
	3.3	3	(CentOS 7/8 EOL)	Q2 2024	
D	C-4		Network infrastructure ready for Run 4	Q4 2027	

Themes: heterogeneous architectures

- How to exploit non-x86 architectures such as GPUs
- Can potentially bring enormous benefits and is thus the highest priority R&D of the ATLAS core software team
- Bulk processing
 - ML for tracking
 - Direct execution on GPUs
- Analysis
 - ML training
 - GPUs for standard analysis (e.g. fast statistics, histogramming)
- Note all these are aggressive R&D, hence won't be achieved without extra funding
 - And technology decision already in 2024: 5 years before HL-LHC starts —
- Connected to future infrastructure changes, e.g. exploitation of GPU-based HPCs

RE-4		Accelerator and machine learning (R&D)	Q3 2025
	4.1	Develop demonstrators for accelerators and new ML techniques	Q1 2024
	4.2	Finalise and implement functional prototypes	Q3 2025
CS-7		GPU Kernel scheduling	Q1 2023
	7.1	Basic support for Kernel scheduling in athena	Q2 2021
	7.2	Integration with Gaudi Scheduler	Q1 2023
CS-8		GPU management techniques and infrastructure in Athena	Q4 2021
CS-9		Develop Multi-algorithm heterogeneous applications	Q2 2023
	9.1	ACTS-based multi-algorithm workflow	Q3 2022
	9.2	FastCaloSim GPU merged into master	Q2 2022
	9.3	Calorimeter clustering	Q4 2022
	9.4	GPU-accelerated ML inference in athena	Q2 2023
CS-10		Infrastructure for processing data across multiple events on an accelerator	Q4 2023
	10.1	Proof-of-concept prototype	Q4 2021
CS-11		GPU Memory management	TBD
	11.1	First (Vecmem) prototype	Q1 2022
CS-12		Make ATLAS Data Model classes accelerator-friendly	Q4 2024
	12.1	Prototype GPU-friendly xAOD classes	Q1 2022
	12.2	Support for reduced/mixed precision in ATLAS EDM	Q4 2022
	12.3	Decision on xAOD API evolution	Q4 2022
	12.4	Event-batching and EDM	Q3 2023
	12.5	Accelerator-friendly detector data model (geometry and calibration)	Q4 2024
	12.6	Evaluate mechanism to offload and update detector description on device	Q4 2024
CS-13		Intra-node scheduling, targeting HPCs and grid	TBD
	13.1	Raythena/HPX-based scheduler prototype	Q3 2022
CS-14	•	HL-LHC Technology decision: CUDA or one of its less-proprietary competitors	Q1 2024
	14.1	Full parallelization pattern recommendation to collaboration	Q1 2024
-	14 2	Design natterns/tutorial on GPU migration	01 2024

Extra new milestone: CS-15: Re-Evaluation of Everything GPU

Themes: data analysis

- Potential for large paradigm shift in HL-LHC driven both by expected resources crunch and explosion in new analysis techniques outside HEP
 - Small, common data formats with minimal information for (almost) all analyses
 - Python-based "columnar analysis" data science tools
 - Interactive rather than batch analysis (e.g. Jupyter notebooks)
- Much of this is ready or being prototyped now
 - Production of DAOD_PHYSLITE (compact common data format) from Run 3 data

Themes: analysis facilities

• A large amount of R&D (and hype) around analysis facilities

- Which have a very broad definition
 - Ixplus@CERN
 - Jupyter with Dask on K8S behind federated AAI
 - "Notebook on the grid"
- Can provide specialised hardware/software (GPUs, ML tools)
- Data delivery, caching and transformation services
- An unresolved question is how to account for them as part of pledged resources
- Do we as Norway want to jump on the bandwagon?

	Requirements for AFs
M	odern authentication (AIM/OIDC), tokens, macaroons, scitokens
E	flicient data delivery and data management technologies
С	olumnar analysis and support new pythonic ecosystem
M	lodern deployment and integration techniques
s	upport for object storage
E	fficient data caching solutions
E	asy integration with existing HPC resources

Current involvement in NorCC (UiO/UiB ATLAS)

- ATLAS distributed computing management, NorduGrid/ARC middleware development, ATLAS@Home, HPC integration
- Tau reconstruction
- Derivation framework, data formats, distributed analysis
- Development and follow-up of the milestones

Contributions to the milestones

(Non-exhaustive; based on current expertise and interests)

-	_													
• G	 GPU programming in core software ————————————————————————————————————						2	Make ATLAS Data Model classes accelerator-friendly	Q4 2024					
								Prototype GPU-friendly xAOD classes	Q1 2022					
1200		0.01			12.2	Support for reduced/mixed precision in ATLAS EDM	Q4 2022							
• N	Machine learning in reconstruction <u>Strong interest</u>							Decision on xAOD API evolution	Q4 2022					
								Event-batching and EDM	Q3 2023					
• H	High performance analysis													
				RE-4		Accelerator and machine learning (R&D)	Q3 2025							
• H	IPC) a	ctivities new workflows		4.1	Develop demonstrators for accelerators and new ML techniques	Q1 2024							
- 10 Co		- 4			4.2	Finalise and implement functional prototypes	Q3 2025							
	DC-5	5.1	Integrating next generation of HPCs Integration of at least 2 EuroHPC sites	Q2 2023 Q4 2022	suckken)			Prototyping & review of columnar data operations for end-to-end	1					
		5.2	Integration of next generation US HPCs for production	Q2 2023		AN-3		analysis	Q2 2024					
	DC-6	3	Exploratory R&D on GPU-based workflows for next generation HPC	Q4 2023			3.1	Tests of basic reading performance using TTree version of PHYSLITE	Q4 2022					
	DC-7	7	HL-LHC datasets replicas and versions management	Q2 2024			3.2	Prototyping of tools for columnar CP operations and other systematics	Q4 2023					
		7.1	Replicas and versions detailed accounting	Q4 2022			3.3	Adoption of ROOT7 data structures	Q1 2024					
		7.2	DAOD replicas reduction	Q4 2023				Performance and ease-of-use assessment leading to decision on						
		7.3	DAOD versions reduction	Q2 2024			3.4	adoption	Q2 2024					
	DC-8	3	Data Carousel for storage optimization	Q4 2023		AN-4		Development of columnar analysis infrastructure	Q2 2026					
_		8.1	cost in case of sensible increase of read/write throughput	Q4 2022			4.1	Prototyping of framework for orchestrating columnar CP operations	Q3 2024					
			Reduce the AOD on disk to 50% of the total AOD volume, using Data				4.2	Development of columnar skimming/augmentation	Q1 2025					
	DC-9	8.2	Carousel to orchestrate the stage from tape for DAOD production. Disk management: secondary(cached) dataset	Q4 2023 Q2 2023			4.3	Demonstrate end-to-end analysis using columnar tools/fkw + dist. comp.	Q4 2025					
		9.1	Evaluate the impact on job brokering and task duration if disk space for secondary data is reduced	Q2 2023	7		4.4	Development & roll-out of documentation/training for run 4 analysis	Q2 2026					

- The purpose of this exercise is to prioritise and allocate existing effort, as well as provide a means to ask for additional effort (to achieve the aggressive R&Ds)
- It may be difficult to achieve all milestones due to limited and decreasing funding across the board
- NorCC members contributing actively to defining and fulfilling milestones
 - Opportunities to contribute further

Vega HPC

- Supercomputer in Slovenia, 250k cores which ATLAS can use opportunistically
- Provides almost as much CPU as the entire WLCG pledge
- Connected by NorduGrid ARC middleware

ATLAS CPU activities on Vega compared to grid WLCG pledge

D. Cameron, NorCC, 15 Sept 2022

ATLAS briefing on Vega HPC

HL-LHC - a glance into the Resource Estimates for 2031

Raw Data AOD Data

Hits MC

AOD MC

