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Overview

* «Traditional» multivariate analysis technigues well
established

* Shift towards more modern, computationally intensive
methods

* Nontrivial implications for both workflow and
interpretation )

e Shift from in-house software frameworks (TMVA, etc) to
external ones :

* Different approaches:
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* ML as «drop-in» replacement for cut-based analysis
* ML operating on low-level data, w/o a traditional ATLAS journal papers
counterpart tagged ML/MVA

* Unsupervised ML, learning abstract representations
rather than labels



Applications

e Event classification
* Diverse portfolio of BSM searches (see Physics session)

* Both signal vs background and multiclass approaches

* Object reconstruction and identification
* Tau reconstruction

e Jet identification

e Regression & anomaly detection

Analyses with standard
or nonstandard input
data types

Physics performance

Analyses with
nonstandard outputs



Applications: Event classification
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Rethinking event classification

Several avenues being explored:
* New methods and architectures applied to columnar data

* Discovery significance (or exclusion limits) used as the
performance metric

e Unsupervised approaches
* Anomaly detection with autoencoder NNs
* Representing parts of, or the entire detector, as an image

* Opens for modern image recognition methods



Unsupervised learning

Anomaly detection:
Reframe BSM detection task

* SM background constitutes the majority of data
* Model trained to reduce dimensionality, then reconstructs
its input
e BSM signal is the ‘anomaly’
* Unknown to trained model, yields high reconstruction error
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ATLAS as a camera

* Calorimeter response in eta-phi represents a 2D (or 3D) image

e Can tap into modern computer vision techniques, while skipping or replacing reconstruction algorithms
* Two different scopes:

* Local — e.g. neighborhood around a jet / object level
* Global — entire detector / event level
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Event image classification

* Represent calorimeter cells as image pixels
e Extendable by adding tracks, calo depth

* Image recognition models well established, but:
e Data wraps around ¢

* Sparse images
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* Nontrivial spatial structure

* Loads of interesting extensions:

* Segmentation — object identification
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ML-driven tau reconstruction

Fake 1, . rejection

* ML success story: tau identification

* Improved jet rejection by use of a recurrent neural
network (RNN)

jet cone

e Single model can take an
arbitrary number of inputs:

T-cone

1-prong / 3-prong / X neutrals

Pion identification improved by
graph neural networks

e Strategy milestone commitments RE-4.1 and RE-4.2
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Interpretation, robustness & explainability

e Some models are more understandable than others
* Decision trees offer feature ranking

* No equivalent for NNs, but approaches exist (e.g. from
game theory)

* Yet all models are influenced by distribution shifts,
reconstruction errors, etc

* Nonlinear nature of modern ML may vield nontrivial
response to such shifts

* Increased interest in model interpretation, both statistical
and on per-event |level
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Framework development

e External ML software forces use of external data formats

* Conversion adds to work and turnaround time
» Data formats often suboptimal for detector data
e Considerable work done on format interoperability
« ROOT’s RDataFrame intended to replace external columnar formats
* Interoperable with xAODs w/o ATLAS libraries
* Preparations for Run4 PHYSLITE format ongoing

#Create dataframe from PHYSLITE
df = ROOT.RDataFrame("CollectionTree", "DAOD PHYSLITE.stringNoTrig.pool.root")

# Apply cuts

# Two muons with pt > 20 Gel

df = df.Filter('AnalysisMuonsAuxDyn.pt.size() == 2', '"Exactly two muons')

df = df.Filter('AnalysisMuonsAuxDyn.pt[@] > 20000 &% AnalysisMuonsAuxDyn.pt[1l] > 20000', 'Muons have pt > 20 GeV')
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Collaboration

R&D ML/AI network holds workshops twice yearly
* Last one in May 2022

* Next one tomorrow

ATLAS Machine Learning Forum: semiweekly meetings

Inter-experimental ML Working Group (IML): monthly meetings

Institute-level collaboration w/ computing

@ Public ~ @ Europe/Zurich ~ 8 S.Maeland -

NorCC R&D Computing and Machine Learning/Al Workshop

September 16, 2022 Q

University of Oslo
EuropefZurich timezone



Collaboration on technical challenges

Choice of model/architecture

Choice of baseline hyperparameters

Treating jagged arrays

... and more

* Intiative started at prev. workshop to form
recommendations

* Intended as general starting points

* Potentially reducing not only work/GPU
cycles, but also erroneous results

Challenges and possibilities in Machine Learning

Algorithms
Neural networks (NN) versus BDTs

® Believed to become stronger
when amount of data increases

* Can model more complex
behavior than BDTs assuming a
big enough training set

* Optimized for GPU running

* Wide range of applications from

® Easily handle missing variables
(i.e. non existent branches in
Some events): BDT just doesn't
partition using that variable in that
event

* Relatively intuitive

e Easyto interpret (large degree of
explainability)

® Limited number of
hyperparameters and those that

simple classification to anomaly
detection to generative models
® Better for Image-style data

exist are easy to understand
® Faster to train?
* More appropriate for smaller
datasets
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R&D ML/Al workshop tomorrow:
https://indico.cern.ch/event/1152542
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