

a next-generation heavy-ion experiment for LHC Run 5 and beyond

G.M. Innocenti (CERN) NorCC workshop, 14-15 September 2022

special thanks to J. Klein for his help

ALICE 3:

Overview of the talk

- Heavy-ion physics in the '30s
- Physics motivation for ALICE 3 (focus on heavy-flavour observables)
- Detector design and (selected) performance studies
- R&D and technological challenges

ALICE 3 Letter of Intent (CERN-LHCC-2022-009) LHCC review completed in March 2022 → ALICE encouraged to continue with R&D!

Schematic evolution of heavy-ion collisions

Many years of experimental and theoretical works have shown the limit of a over-simplified description!

W. Busza, K. Rajagopal, W. v. d. Schee, ARNPS, Vol. 68:339-376, 2018

- What is the smallest system where QGP can be formed?

Heavy quarks in heavy ions: a recent revolution

Over the last decade, we witnessed a "revolution" in heavy-ion physics: heavy-quark studies became available!

m_c ~ 1.5 GeV **Λ**_{QCD} ~ 200 MeV **T**_{QGP} ~ 300 MeV $\mathbf{m}_{u,d,s} \lesssim \mathbf{T}_{QGP}$

- high-Q² scatterings (\rightarrow pQCD) and early production
- **no "thermal" production** (abundant for light quarks)

→ Conserved and traceable witness of the QGP evolution

A. Andronic et al. EPJC 76 107 (2016)

Experimental evidence with heavy quarks

With Run 3 and 4 experimental campaigns:

- medium effects and hadrochemistry of single-charm observables
- characterization of collective effects from small to large system

G.M. Innocenti, NorCC workshop, 14-15 September 2022

Bound states are affected by deconfined medium

HF-hadron production modified at high densities

 \rightarrow different suppression for different binding energies

 \rightarrow E.g. increased Λ_c/D^0 ratio

Heavy-flavour physics with ALICE 3

Heavy quarks interact and lose energy

Heavy quarks "flow" with the medium

<u>Physics goal of ALICE 3: identify and characterize the common</u> microscopic dynamics underlying all of these phenomena

Microscopic description of heavy-quark interaction and medium structure with high accuracy charm/beauty hadron measurements and HF correlations

G.M. Innocenti, NorCC workshop, 14-15 September 2022

Bound states are affected by deconfined medium

HF-hadron production modified at high densities

 \rightarrow different suppression for different binding energies

 \rightarrow E.g. increased Λ_c/D^0 ratio

New constraints of hadronization mechanisms in the QGP with multicharmed hadrons and HF-jets

Complete description of bound states in the QGP with additional quarkonia states and exotic hadrons

Time-evolution and chiral-symmetry restoration

Understand time evolution and mechanisms of chiral symmetry restoration

- → high-precision measurements of dileptons, also multi-differentially
- → further reduced material; excellent heavy-flavour rejection

G.M. Innocenti, NorCC workshop, 14-15 September 2022

symmetry restoration differentially

ALICE 3 for heavy-ions in the '30

ALICE 3: A high-rate, high-resolution, large coverage (Inl<4) heavy-ion experiment for Run 5 and 6

Superconductive 2T solenoid:

 \rightarrow flat p_T resolution over the entire acceptance

Run 5 and 6 with ALICE 3:

- 35 nb⁻¹ of PbPb (or ArAr/KrKr) minimum bias
- 18 fb⁻¹ of pp minimum bias

High resolution tracker + Time-of-Flight and RICH over 8 η units

"Low-p_T" muon detector:

 \rightarrow accessing J/ ψ down to pT=0

Calorimetry:

- Electromagnetic calorimeter $(1.5 < \eta < 4)$
- Design of HCAL calorimetry under development (sPHENIX)

ALICE 3 tracker

Outer tracker layers $|\eta| < 4.0$:

- MAPS sensors
- $X/X_0 \sim 1\%$ per layer

Retractable tracker concept (IRIS)

Inner layers (E.g. IRIS):

- based on large, bent MAPS sensors, $X/X_0 \sim 0.1\%$ per layer
- in-secondary vacuum
- first layer at R=0.5 cm

- DCA resolution ~ few µm at ~1 GeV
- Secondary vertex resolution ~ 3-4 μ m at low p_T → critical for multiple-HF measurements
- G.M. Innocenti, NorCC workshop, 14-15 September 2022

Hadron PID capabilities

PID performed with TOF and RICH detectors both in at central and forward rapidities:

 \rightarrow continuous PID coverage from p_T<100 MeV until ~ 10 GeV for y=0

K/p

Heavy-quark parton propagation

QCD structure of strongly-coupled QGP

charmed and beauty mesons down to $p_T = 0 \rightarrow$ strongly-interacting QGP

• $m_{c,b} > m_{u,d,s}$: "Brownian regime" in the QGP \rightarrow sensitive to the QGP diffusion and drag properties

 \rightarrow constrain e.g. QGP spacial diffusion coefficient $D_{s=}D_{s}(T)$ in e.g. Bayesian fits → calculable from Lattice QCD, characterizes the structure of a strongly coupled QGP

• beauty less likely to thermalize, $\tau_{\text{beauty}} \sim 12 \text{ fm/c} \sim \text{QGP}$ lifetime $\sim 3 \tau_{\text{charm}}$

G.M. Innocenti, NorCC workshop, 14-15 September 2022

S. Cao et al. Phys. Rev C. 99.054907 Yellow Report, CERN-LPCC-2018-07 S. Bass et al, Phys. Rev. C 103, 054904 (2021) **R. Rapp et EMMI**. <u>NPA Vol. 97, 2018 21-86</u>

Beauty quarks have different interaction with the medium and different sensitivity to hadronization mechanisms:

Single-hadron measurements with ALICE 3

With ALICE3, high accuracy measurements of both charm and beauty mesons and baryons:

"textbook" accuracy in extraction of medium coefficients: (better theoretical control of beauty quark diffusion in the QGP)

- stronger constraints on HF hadron collective properties and their relation with hadronization mechanisms

Λ_c secondary vertex resolution

Heavy-flavor correlations

- - - n-coverage and statistics

M. Nahrgang, et al. arXiv:1305.3823 S. Cao et al., Phys. Rev. C 92, 054909 (2015)

 Accurate secondary vertex reconstruction + hadron PID (~0.1 to few GeV) \rightarrow need for very high signal purities

G.M. Innocenti, NorCC workshop, 14-15 September 2022

14

$D^0 \overline{D}^0$ correlations in PbPb collisions

- $D^0 \overline{D}^0$ correlations are measurable down to low p_T over about 8 units of rapidity
- High accuracy in measurement of the correlation pattern \rightarrow unique sensitivity to broadening of $c\bar{c}$ pairs

ALICE 3 as the ideal experiment with multiple HF hadrons and correlations

- $\Lambda_{c}^{+} \Lambda_{c}^{-} B^{+} B^{-}$ correlations, HF- γ correlations
- Single and double-tagged HF jet studies

New probes for hadronization at high partonic densities

Heavy-flavor hadronization in heavy-ion collisions

(described with statistical weights)

In Run 3 and 4:

• extensive campaign to measure Λ_c , Ξ_c , Ω_c in heavy-ion collisions

Hadronization mechanisms beyond in-vacuum independent fragmentation: \rightarrow charmed hadrons formed by combination of quarks from independent hard scatterings

Multi-heavy flavor hadrons

C

- Negligible same-scattering production
- In presence of hadron production from uncorrelated charm quarks
 - → Large enhancement (up to x100) w.r.t. pp predicted

ALICE: arXiv.2011.06078 Beccatini: Phys. Rev. Lett. 95 (2005) 022301 SHMC: arXiv.2104.12754 G. Chen et al., Phys. Rev. D 89, 074020 (2014)

Multi-heavy flavor hadrons

→ Dynamic connection between "equilibrium" properties of charm quarks and hadronization modifications

G.M. Innocenti, NorCC workshop, 14-15 September 2022

ALICE: arXiv.2011.06078 Beccatini: Phys. Rev. Lett. 95 (2005) 022301 SHMC: arXiv.2104.12754 G. Chen et al., Phys. Rev. D 89, 074020 (2014)

Ξ⁺⁺_{cc} with strangeness tracking

 $\Xi^{++}_{cc} \rightarrow \Xi^{+}_{c} + \pi^{+}$ (ct \approx 76 µm) $\Xi^+_c \rightarrow \Xi^- + 2\pi^+$ (ct $\approx 132 \ \mu m$) $\Xi^- \rightarrow \Lambda + K^-$

 \rightarrow With ALICE 3, significant observation of Ξ^{++}_{cc} and Ω_{cc} signals expected in PbPb collisions down to low p_T

Ξ^{++}_{cc} with strangeness tracking

 $\Xi^{++}_{cc} \rightarrow \Xi^{+}_{c} + \pi^{+}$ (ct \approx 76 µm) $\Xi^+_c \rightarrow \Xi^- + 2\pi^+$ (ct $\approx 132 \ \mu m$) $\Xi^- \rightarrow \Lambda + K^-$

- strong improvement in selection accuracy
- large reduction of combinatorial background

Bound states in the QGP

η_c and $\chi_{c,b}$ states in heavy-ions

Strong push from the theoretical community to measure more states with different quantum number properties

Pseudo-scalars (η_c)

never measured in HI collisions

$\chi_c \text{ and } \chi_b \rightarrow J/\psi + \gamma (L=1):$

- different bound-state stability and sensitivity to thermal fluctuations
 - → significant discrepancies among different theoretical predictions
- Photon reconstruction down to ~ 0.5 GeV with good resolution:
- J/ ψ and Y reconstruction **down to low p**_T

P. Artoisenet et al. Phys. Rev. D 81, 114018 A. Andronic et al.: PLB 797, 2019, 134836 + priv. communication Belle: PRL 91, 262001 (2003)

Exotic hadrons in HI collisions

- Constrain their nature by studying their interaction with the hadronic environment
- New insights into properties of complex bound states in the QGP

• J/ ψ and Y reconstruction down to 0 at mid- and forward rapidities • low p_T reach for measuring soft pions

G.M. Innocenti, NorCC workshop, 14-15 September 2022

Wu, B., et al.: Eur. Phys. J. A 57, 122 (2021)

J/ψ performance as a benchmark

• J/ ψ reconstruction down to p_T=0 as a building block of the quarkonia/exotic program of ALICE 3

• J/ ψ reconstruction at y=0 down to p_T = 0 GeV/c as a unique feature of the ALICE 3 detector

P-wave measurements with ALICE3

Photon identification performed with ECAL:

- high-resolution crystals at mid rapidity (no boost)
- sampling calorimeter at more forward rapidities
- → maximize photon reconstruction efficiency

$\chi_{c1}(3872)$ measurements with ALICE 3

→ Low p_T reach for J/ ψ and charged tracks could allow for a unique kinematic reach at the LHC → For both $\chi_{c,b}$ and $\chi_{c1}(3872)$ work is ongoing to assess the low p_T reach for heavy-ion analyses

Conclusions and outlook

Unique apparatus for untriggerable QCD probes:

- resolution + high-rate + pseudorapidity coverage
- \rightarrow understanding heavy quark diffusion in the QGP
- \rightarrow thermalisation and hadronisation
- \rightarrow bound states' interactions and nature of the states

Several new physics areas are being explored in collaboration with several theory groups

Conclusions and outlook

An intense activity of R&D is foreseen for the next few years. Some examples:

Tracker sensors:

- thinning and bending of silicon sensors (relying on ITS3 experience)
- modularization and industrialisation (outer tracker)
- readout bandwidth vs power-consumption limitations
- inner-layer mechanics

Silicon timing detector:

- characterization of SPADs/SiPMs, with first beam tests
- monolithic timing sensors R&D
- •

Unique apparatus for untriggerable QCD probes:

- resolution + high-rate + pseudorapidity coverage
- \rightarrow understanding heavy quark diffusion in the QGP
- \rightarrow thermalisation and hadronisation
- \rightarrow bound states' interactions and nature of the states

Long-term schedule

- **2023-25**: selection of technologies, small-scale proof of concept prototypes (~ 25% of R&D funds)
- **2026-27**: large-scale engineered prototypes (~75% of R&D funds) → Technical Design Reports
- **2028-31**: construction and testing
- **2032**: contingency
- **2033-34**: Preparation of cavern, installation

ALICE 3 "schedule"

Characterizing the QGP with parton "energy loss"

→ Characterize QGP properties (e.g. interaction strength) by measuring the energy lost by high-p_T partons while traversing it

In pQCD, described for high-p_T partons by:

- \rightarrow enhances splitting probability in the QGP
- \rightarrow high-p_T partons lose energy via **medium-induced** gluon radiation

BDMPS, Nucl.Phys., B484:265–282, 199 B.G. Zakharov, JETP Lett., 63:952-957, 1996.

pQCD calculations in the presence of QGP (e.g. BDMPS-Z):

- 1. $E_{loss} \propto C_R$ (Casimir factor, = 3 for gluons and 4/3 for quarks)
- 2. Collinear radiation reduced for heavy quarks ("dead-cone" effect)

"Flavor"-dependence of energy loss:

 \rightarrow E_{loss} (gluons) > E_{loss} (c-quark) > E_{loss} (b-quark)

Characterizing the QGP with parton "energy loss"

How to observe it experimentally?

→ measurements of light, charm and beauty hadrons

gluon \rightarrow light hadrons $c \rightarrow D$ mesons $b \rightarrow B$ mesons

A. Buzzatti, M. Gyulassy, NPA, Vol 910-911, 2013, 490-493

Characterizing the QGP with parton "energy loss"

How to observe it experimentally?

→ measurements of light, charm and beauty hadrons

gluon \rightarrow light hadrons $c \rightarrow D$ mesons $b \rightarrow B$ mesons

\rightarrow test the pQCD expectations!

A. Buzzatti, M. Gyulassy, NPA, Vol 910-911, 2013, 490-493

A wide program beyond heavy-flavour measurements

Dielectron mass

- Access to the initial phase of the QGP to measure its early radiation
- mechanisms of chiral symmetry restoration in the quark-gluon plasma

→precision measurements of dileptons

G.M. Innocenti, NorCC workshop, 14-15 September 2022

ρ ' acceptance

ALP search

Ultra-soft photons

More HF observables with ALICE 3

• HF flow in small and large systems up to very large $\Delta \eta$ \rightarrow relevance of initial and final state effects

• HF-γ and HF-HF correlations:

- \rightarrow absolute measurement of heavy-quark energy loss
- \rightarrow Moliere scatterings with the medium constituents with HF-tagged jets

Jet measurements with single and double-tagged heavy-hadrons:

- \rightarrow characterize heavy-hadron fragmentation patterns
- \rightarrow time-dependent probes for in-medium broadening

Beyond QGP physics:

- Constraints on branching ratios for rare decays relevant to Dark Matter studies
- Study of the strong interaction between heavy flavour hadrons
- search for charmed hyper and super nuclei in HI collisions
- Exotic production in UPC collisions

n coverage and correlation analyses

Large acceptance plays a critical role in low p_T correlation analyses

→ Significant increase of signal yield

Access to unexplored region of large $\Delta \eta$ (> 2) \rightarrow longitudinal properties of medium evolution

Why heavy-ion collisions: a historical perspective

What are the properties of nuclear matter at high temperature ($\sim \Lambda_{QCD}$)?

"deconfined" quarks and gluons

How are hadrons formed in the presence of such a phase?

→ map the equilibrium phase diagram of nuclear matter

G.M. Innocenti, NorCC workshop, 14-15 September 2022

H-.T. Ding et al., <u>arXiv 1504.05274</u> W. Busza, K. Rajagopal, W. v. d. Schee, <u>ARNPS</u>, Vol. 68:339-376, 2018

Heavy-ion program at the LHC

	_
6 a a	
	-
	-
	-
	æ
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	æ
	71
	•

	-
	-
	100
	-
_	-
_	
	-
	-
_	-
	- 18
	-
	-
	-
	-
	-
	-
	-
	-
	-
	22
	-
	100
	- 22
	-

Detector needs

System	Physics areas	Requirements	Specifications	Detectors
Vertexing	Multi-charmed baryons, dielectrons (HF rejection)	DCA resolution ~10 µm (p⊤ > 200 MeV/c)	P.R. ~1 µm, R _{in} ~5 mm, X/X ₀ ~0.1 % / layer	inner tracker based MAPS w/ pitch ≲ 10
Tracking	Multi-charmed baryons, di-electron mass reso	σ _{pT} / p _T ~2 %	P.R. ~10 μm, X/X ₀ ~1 % / layer	outer tracker based MAPS w/ pitch 30-50
h-ID	Multi-charmed baryons	π/K/p separation up to 4-5 GeV/c	π/K/p separation up to 4-5 GeV/c	TOF (20 ps) + RIC TOF + DIRC
e-ID	Dielectrons, quarkonia, χ _{c1} (3872)	pion rejection by 1000x up to ~2 - 3 GeV/c	3σ separation of e and π up to 3 GeV/c	TOF (20 ps) + RIC TOF + preshower
µ-ID	New quarkonia, $\chi_{c1}(3872)$	efficient from p⊤ ~1.0 GeV/c	under study	iron absorber + mu chambers
ECal	Photons, jets, χ_c	under study	under study	PbWO4 + GAGG:0
low-p⊤ photons	Low's theorem	identification and energy determination of photons in p⊤ range 10 - 50 MeV/c	under study	Forward conversion tracker high-resolution ECa

• Silicon pixel sensors

- thinning and bending of silicon sensors \rightarrow expand on experience with ITS3
- exploration of new CMOS processes \rightarrow first in-beam tests with 65 nm process
- modularisation and industrialisation

Silicon timing sensors

- characterisation of SPADs/SiPMs \rightarrow first tests in beam
- monolithic timing sensors → implement gain layer

Photon sensors

- monolithic SiPMs
 - → integrate read-out

Detector mechanics and cooling

- mechanics for operation in beam pipe → establish compatible with LHC beam
- minimisation of material in the active volume
 - → micro-channel cooling

Strategic R&D

Unique and relevant technologies

→ Synergies with LHC, FAIR, EIC, ...

Enhancement of the $g \rightarrow c\bar{c}$ splitting probability

With BDMPS-Z, first calculation of $P^{\text{medium}}(g \rightarrow c\bar{c}) = P^{\text{vac}} + P^{\text{mod}}$

Significant increase of the $g \rightarrow c\bar{c}$ in medium:

• interaction with QGP increases production of a traceable quantity \rightarrow measurable

 \rightarrow Yields of DD tagged jets in pp and PbPb collisions would allow to explore these mechanisms

 \rightarrow Measurements to be explored with the upcoming high-luminosity data

Papers in preparation, QM 2022

