

The level density and γ-ray strength function of ⁶⁷Ni

Vetle W. Ingeberg NorCC Workshop 2022

UNIVERSITY OF OSLO

Outline

- What are nuclear level densities (NLD) and γ-ray strength functions (γSF)?
- Nuclear astrophysics
- How can we measure these (the Oslo Method)?
- Experiment at ISOLDE
- Results

Statistical properties of nuclei

Nuclear level density

DZ

γ-ray strength function

$$f_{XL}(E_{\gamma}, E_i, J_i, \pi_i) = \frac{\langle \Gamma_{\gamma}^{XL} \rangle (E_{\gamma}, E_i, J_i, \pi_i)}{E_{\gamma}^{2L+1}} \rho(E_i, J_i, \pi_i)$$

- $\langle \Gamma_{\gamma}^{XL} \rangle (E_{\gamma}, E_i, J_i, \pi_i)$: Average decay width with γ -ray energy E_{γ} from excitation bin with energy E_i , spin J_i and parity π_i
- $\rho(E_i, J_i, \pi_i)$: Level density
- X=Electric or Magnetic
- Multipole L=1,2,3,etc.
- L=1, dipole will be dominating

γ-ray strength function

What does NLDs and ySFs tell us?

Impact of the low energy enhancement

Reaction cross sections

Reactor physics Energy

Isotope production Nuclear medicine

Nuclear astrophysics How are elements made?

Jason Richards/ORNL (CC), ESO/L. Calçada/M. Kornmesser (CC)

How are the elements made?

- Elements up to Fe/Ni fusion reactions in stars
- Elements heavier than Fe/Ni neutron capture processes
 - Slow neutron capture process (s-process) $\approx 50\%$
 - ➤ Rapid neutron capture process (r-process) ≈ 50%

Alan Stonebreaker/APS

i-process

- Elemental abundances in certain metalpoor stars cannot be explained by either s-process, r-process or a combination¹
- An intermediate neutron capture process (i-process) can explain the discrepancy¹
- Sensitivity study of the weak i-process suggests ⁶⁶Ni(n, γ) capture reaction as a major bottleneck affecting all abundances²
- ⁶⁶Ni(n, γ) rate is constrained by measuring the NLD and γSF of ⁶⁷Ni

¹I. U. Roederer *et al.*, ApJ **821**, 37 (2016) ²J. E. McKay *et al.*, MNRAS **491**, 5179 (2020)

i-process

The Oslo Method

Inverse kinematics

ISOLDE

ISOLDE

ISOLDE/Miniball experiment

- Beam: ⁶⁶Ni@4.47(1) MeV/u
- Target: 670 ug/cm² deuterated polyethylene (C₂D₄)
- ≈ 140 hours of beam time
- $\approx 3.5 \times 10^6$ pps
- 6 MINIBALL clusters + 6 large volume LaBr₃:Ce detector from OSCAR
- C-REX particle array
- Approx. 320,000 particle- γ coincidences

The Oslo Method

Extraction of NLD and ySF

- $P(E_x, E_{\gamma}) \propto E_{\gamma}^3 f(E_{\gamma}) \rho(E_x E_{\gamma})$
- NLD and gSF extracted by fitting theoretical FG: $P_{th}(E_x E_\gamma) = \frac{E_\gamma^3 f(E_\gamma) \rho(E_x - E_\gamma)}{\sum_{E_\gamma = E_\gamma^{min}}^{E_x} E_\gamma^3 f(E_\gamma) \rho(E_x - E_\gamma)}$
- $f(E_{\gamma}) \& \rho(E_x E_{\gamma})$: Free parameters for each E_{γ} and $E_f = E_x E_{\gamma}$
- Need to normalize extracted NLD and gSF since Pth is invariant under transformation

$$\tilde{\rho}(E_f) = A\rho(E_f)e^{\alpha E_f}$$
$$\tilde{f}(E_{\gamma}) = Bf(E_{\gamma})e^{\alpha E_{\gamma}}$$

Normalization of NLD

- Typically normalize to auxiliary nuclear data
- NLD from known levels
- NLD at neutron separation energy
- Level scheme of ⁶⁷Ni is (very) incomplete
- NLD of ⁶⁷Ni at neutron separation is unknown
- Solution: Normalize to large scale shell model calculations

Normalization of ySF

V. W. Ingeberg *et al.* (in preparation)

199192

Neutron capture cross section

199192

Summary

- \blacksquare We have measured the γ SF and NLD of 67Ni
- First time the Oslo Method has been applied to an inverse kinematics experiment with radioactive beam
- Expect a rather quick i-process
- Soon to be submitted
- Paves the way for new Oslo Method experiments at ISOLDE

Future plans at ISOLDE

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	
Proposal to the ISOLDE and Neutron Time-of-Flight Committee	
Neutron single-particle states and neutron-capture cross sections towards ⁷⁸ Ni: 79 Zn (d, p) ⁸⁰ Zn	
January 6, 2021	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
	Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee
 E. Sahin¹, G. de Angelis² K.S. Beckmann¹, F. Bello¹, H.C. Berg³ T.K. Eriksen¹ Gjestvang¹, A. Görgen¹, M. Guttormsen¹, K. Hadyńska-Klęk⁴, V. W. Ingeberg¹ Jones⁵, A.C.Larsen¹, K.L.Malatji⁵, M. Markova¹, W. Paulsen¹, L.G. Pedersen¹, L.Pellegri⁵, S. Siem¹, M. Wiedeking⁵, F.Zeiser¹ and TREX and MINIBALL collaborations. 	, P. Neutron-capture cross section for i process bottleneck 75 Ga: 75 Ga $(d,p\gamma)^{76}$ Ga

December 20, 2021

F. Pogliano¹, R. Gernhaeuser², A. C. Larsen¹, K. S. Beckmann¹, F. Bello¹, H. C. Berg⁴, T. K. Eriksen¹, D. Gjestvang¹, S. Golenev², A. Görgen¹, M. Guttormsen¹, A. Spyrou⁴, S. Liddick⁴, D. Mücher⁷, K. Hadyńska-Klęk⁵, V. W. Ingeberg¹, P. Jones⁶, K. L. Malatji⁶, M. Markova¹, W. Paulsen¹, L. G. Pedersen¹, L. Pellegri⁶, E. Sahin¹, S. Siem¹, M. Wiedeking⁶, F. Zeiser¹, P. Rieter⁸, K. Arnswald⁸, M. Droste⁸, H. Hess⁸, P.H. Kleis⁸

199192

Bring OSCAR to ISOLDE?

D

Collaborators

D. L. Bleuel

Lawrence Livermore

J. Cederkäll, L. P. Gaffney

UNIVERSITY of the WESTERN CAPE

S. Siem, F. Bello Garrote, T. L. Christoffersen, L. Crespo Campo, A. Görgen, B. V. Kheswa, G. M. Tveten, F. Zeiser

M. Wiedeking, P. Jones, S. N. T. Majola, K. L. Malatji, T. Nogwanya, K. Sowazi

K. J. Abrahams, T. Nogwanya, K. Sowazi

G. Rainovski

University of Cologne

K. Arnswald, P. Reiter, D. Rosiak, B. Siebeck, M. Seidlitz, N. Warr

> ULBR UNIVERSITÉ LIBRE DE BRUXELLES

S. Goriely

H. De Witte, A. Illana Sison,

J. Cederkäll, J. Snäll

