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Particle colliders are too expensive
> Proposed next-generation colliders are priced at $7–25 billion ⇒ no one can afford to host it…


> Driven by limits in accelerator technology:

> Circular colliders: magnetic field (10–20 T) for p+, and synchrotron radiation for e+/e–


> Linear colliders: accelerating gradient (~100 MV/m)

Future Circular 
Collider 

$20–25 billion

Plasma-based 
 collider 

< $1 billion ?

Funding 

agencies

Funding 
agencies



Page 3Dr. Carl A. Lindstrøm  |  15 September 2022  |  NorCC Workshop  |  UiO research towards plasma accelerators and a plasma collider

Plasma wakefields: What are they?
> Plasma wake: charge-density wave in a plasma, 

                         driven by intense laser- or particle beam 

> Plasma wakefield: strong electromagnetic fields caused by the 
separation of electric charges (electrons from ions)


> Can be used to accelerate charged particles


> Analogy: a surfer in the wake behind a boat


> Discovered in 1979 by Tajima and Dawson (UCLA)…


> …similar ideas by Veksler et al. in 1956 (in Soviet Ukraine).

From: Sören Jalas/Universität Hamburg

Toshiki Tajima and John M. Dawson 
“Laser electron accelerator” PRL 43, 267 (1979)

Vladimir I. Veksler 
“Coherent principle of acceleration” (1956)
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Plasma wakefields: Unlimited accelerating fields
> Single-use accelerator cavity, travelling at speed c  
⇒ not affected by breakdowns (it is the breakdown)


> Laser driver: radiation pressure (ponderomotive force)

> Beam driver: electric repulsion


> Higher plasma density ⇒ higher gradient  
                                       ⇒ smaller dimensions
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From: Lindstrøm et al. (submitted)
From: DESY/SciComLab
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Plasma-accelerator experiments around the world

> First experiments in 1980–1990s.

> Large energy gain achieved in 2007 at SLAC: 42 GeV acceleration in 85 cm 
> Currently several large-scale experiments worldwide: SLAC, LBNL, DESY, CERN, ++

8 GeV energy gain in 20 cm (laser-driven).

 

From: Gonsalves et al., PRL 122, 084801 (2019).

Energy doubling of 42 GeV 
electrons in 85 cm (electron-driven) 

From: Blumenfeld et al., Nature 445, 741 (2007)

2 GeV energy gain in 10 m  
(proton-driven).


 
From: Adli et al. (AWAKE), Nature 561, 363 (2018).
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ηN
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Low emittanceLow energy spread

(luminosity spectrum, final focusing)

High energy efficiencyHigh average power

High charge

Plasma-wakefield accelerators: how do they perform?

> Main metric for colliders: Luminosity per power
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High energy efficiency is possible
> Three-part efficiency:
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From: Lindstrøm et al., PRL 126, 014801 (2021)

> Beam drivers are superior in efficiency (compared to laser drivers) => UiO is focusing on beam-driven

> Beam-driven plasma accelerators comparable to (or better than) CLIC technology

Production of the driver

(wall-plug to driver)

Driver energy depletion

(driver to plasma wake)

Acceleration efficiency

(plasma wake to beam)

From: Peña et al. (manuscript in preparation).

× × 42% achieved in experiment

(up to ~90% in theory)

~50% achieved in experiment

(up to ~90% in theory)

55% predicted for CLIC

From: CLIC Conceptual Design Report (2012)

12% if combined 
(~40% in theory)=
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High repetition rate may be possible

> High integrated luminosity requires high repetition rate.

> Recent experimental result indicates that the plasma 

recovers in less than 10–100 ns ⇒ 10–100 MHz


> Many questions remain:

> How quickly can the plasma be renewed?

> What is the effect of heating of the plasma  

(by the energy left in the plasma wake)

How long before the plasma disturbance is gone? 
From: R. D’Arcy et al., Nature 603, 58 (2022)
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Positron acceleration is difficult

> RF accelerator: charge symmetry  
(just change phase by 180 degrees)


> Plasma accelerator: charge asymmetry (electrons 
are light, ions are heavy)


> Experiments have demonstrated positron 
acceleration (SLAC, 2015) 

> However, beam quality is destroyed.

> Proposed solution: Hollow plasma channel? 


> Demonstrated in experiment (SLAC)

> Beam quality okay, but  

fundamentally unstable.


> Some ideas, but currently no known solution.

Positrons accelerated in a plasma 
From: S. Corde et al., Nature 524, 442 (2015)
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From: Lindstrøm et al., PRL 120.124802 (2018)
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Fundamental challenge: Gradient vs. beam quality
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Source: KEK

> General rule: higher gradient means smaller dimensions:

> Bunch dimensions takes up a larger proportion of the cavity 

dimensions

> Timing and alignment jitter is proportionally larger


> Beam quality requires:

> Field uniformity (longitudinally) 

> Field linearity (transversely)


> Consequently, fields must be: 
> …controlled to higher order (further out, proportionally)

> …controlled smaller dimensions (microscopic) 

> …more stable (synchronisation and alignment)


> Everything becomes more difficult.
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Preserving beam quality: charge, energy spread, and emittance

> Several beam qualities are key to a collider: all must be preserved throughout the plasma accelerator.

> Energy-spread can be preserved by precise shaping of current profile (beam loading).


> Possible, but very challenging, to preserve emittance in the blowout regime (nonlinear wakes).


> Recently achieved experimentally in the FLASHForward facility at DESY (1 GeV electron beam).

> Short accelerator stage (5 cm) — next step is more energy gain (longer stage, more stages)
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Energy spread and charge preservation. 
From: Lindstrøm et al., PRL 126, 014801 (2021).
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Emittance preservation (+ energy spread + charge). 
From: Lindstrøm et al. (submitted).

Preliminary
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UiO research topic: Transverse instabilities
> Problem in long plasma accelerators: instabilities


> Caused by a resonance between beam and wake. 
> Must be suppressed.


> Several questions remain unanswered:

> How do we measure this instability?

> How do we suppress the instability? (ideas exist)


> UiO is leading experiments at FACET-II at SLAC Transverse instability due to a beam–plasma resonance. 
From: S. Diederichs (simulated in HiPACE++)

Conventional diagnostics: dipole spectrometer (measure output)

Transverse

plane

Energy

(3)

(1) (2)

(4)

Novel diagnostics: plasma-emission light (measure along accelerator) 
From: Boulton et al. (submitted)
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UiO research topic: Connecting multiple accelerator stages

> Problem with “staging”: chromatic focusing 
> Strong focusing ⇒ rapid divergence 

> Particles of different energy are focused 
differently ⇒ beam is not coupled well


> Solution: achromatic optics

> UiO is leading the development of advanced 

beam optics based on plasma lenses.
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Experimental demonstration of staging (LBNL), 
which suffered from strong chromaticity. 
From: Steinke et al., Nature 530, 190 (2016).

Chromaticity between stages. 
From: Lindstrøm, PRAB 24, 014801 (2021).
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Figure 4: Proposed optics using transversely tapered plasma lenses. From Lindstrøm, to be published (2021).

Proposed plasma-lens optics with nonlinear plasma lenses.Plasma lens (left: helium, right: argon). 
Photo by Kyrre N. Sjøbæk.
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UiO research topic: A plasma-based photon (γ–γ) collider
> Question: How can we use plasma accelerators for particle 

physics, near-term?

> Answer: Build a photon collider!


> Just before IP: Convert laser pulse to gammas by 
colliding with electrons (inverse Compton scattering)


> Advantage: Only need two electron accelerators 
(no positrons) 

> Advantage: Can operate directly at the Higgs 
resonance (125 GeV) instead of HZ (250 GeV).


> Disadvantage: R&D required for ultra-powerful laser.

> UiO is investigating the feasibility of a plasma-based 

photon collider. 
> Idea first proposed in 1998.

> Now, we finally have the necessary solutions to make a 

plasma-based design concept (i.e., staging + stability)

From: Badelek et al., TESLA Technical Design Report, Part VI (2001)

From: Rosenzweig et al., NIM A 410, 532 (1998)
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A plasma-based collider in Norway???

Cheap electricity!

Cost similar to two F-35 jets 
(Norway has ordered 52 of these)

> Rough, preliminary cost estimate of a Higgs factory 
(125 GeV centre-of-mass energy):


> Construction cost: ~$300 million 

> Running cost (CERN): ~$70 million/year


> Running cost (Trøndelag): ~$4 million/year



Page 16Dr. Carl A. Lindstrøm  |  15 September 2022  |  NorCC Workshop  |  UiO research towards plasma accelerators and a plasma collider
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In conclusion

> Particle colliders are too expensive, due to low 
acceleration gradient in RF accelerators


> Plasma wakefield accelerators promise:

> High acceleration gradient, energy efficiency, 

repetition rate, and beam quality. 
> But… positrons are challenging.


> Several UiO research topics in plasma acceleration:

> Suppressing transverse instabilities.

> Coupling of accelerator stages

> Concept for a photon collider


> Conclusion: Particle physics with plasma-wakefield 
accelerators now seems within reach
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From: Rosenzweig et al., NIM A 410, 532 (1998)


