$1^{\rm st}$ Summer School for young researchers of the Norwegian Centre for CERN-related Research

Introduction to Cosmology

Oleksandr Sobol, Stanislav Vilchinskii

Taras Shevchenko National University of Kyiv, Ukraine

O. Sobol, S. Vilchinskii (TSNUK)

Introduction to Cosmology

Why the Universe is interesting for physicists?

In the Universe, matter is in **extreme conditions**, often unattainable in the laboratory:

Superstrong gravitational fields

Superstrong electromagnetic fields

Superdense states of matter

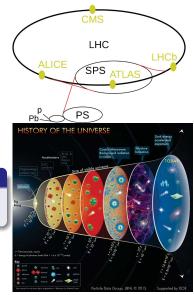
Superhigh energies of particles

O. Sobol, S. Vilchinskii (TSNUK)

Introduction to Cosmology

29.06.2022

Why the Universe is interesting for particle physicists?


- SPS (Super Proton-Antiproton Synchrotron, 1981 – 1991)
 900 GeV — ~\$ 1 billion
- LHC (Large Hadron Collider, 2010 now)
 13 TeV ~\$ 9 billion
- FCC (Future Circular Collider, planned)
 50 TeV ~\$ 20 billion (?)

Ya. B. Zel'dovich

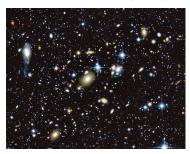
"The Universe is the poor man's particle accelerator."

Energies as high as 10^{16} GeV could be reached there! We receive cosmic rays with energies up to

 $\sim 10^{11}~\text{GeV}$ from the Universe!

O. Sobol, S. Vilchinskii (TSNUK)

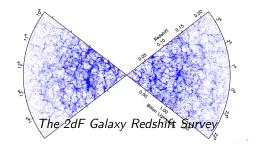
29.06.2022 3 / 31


Characteristic sizes and distances in the Universe

Distance Earth–Sun: $1.5\cdot 10^{13} \text{cm} \equiv 1\text{a.u.}$ Nearest star: $4\cdot 10^{18} \text{ cm}$

1 light year (ly) = $0.95 \cdot 10^{18}$ cm, 1 parsec (pc) = $3.1 \cdot 10^{18}$ cm

Sizes of visible parts of galaxies are of order ≈ 10 kiloparsec (kpc). Dark halos of galaxies extend to distances of order ≈ 100 kpc and larger. Clusters of galaxies have sizes of order $\approx 1 - 3$ megaparsec (Mpc).


Characteristic cosmic voids distance: more than 10 Mpc $\sim 3.1 \times 10^{25}$ cm The size of the visible Universe is 14 gigaparsec (Gpc) $\sim 10^{28}$ cm

O. Sobol, S. Vilchinskii (TSNUK)

Introduction to Cosmology

Cosmological principle

Cosmological principle - at large scales (≥ 100 Mpc) the (visible part of) the Universe is homogeneous and isotropic: all regions of the Universe are the same, and no direction is preferred. This feature ensures that observations made from our single vantage point are representative of the Universe as a whole and can therefore be legitimately used to test cosmological models. Also one has well developed inhomogeneous structure on smaller scales;

The Universe is expanding

- Vesto M. Slipher discovers redshifts of the spectral lines in the nearby galaxies (1912-1913). Willem de Sitter speculates for the first time that this can be due to cosmological expansion
- Edwin Hubble discovers in 1925 that spiral "nebulae" are far from us (they are galaxies M31, M33)
- Edwin Hubble and Milton Humason estimate the distances to the nearby galaxies and establish redshift-distance relation (1926)

$$cz = c rac{\lambda - \lambda_0}{\lambda_0} = H_0 r$$

which they interpreted using the Doppler effect as

$$v = H_0 r$$

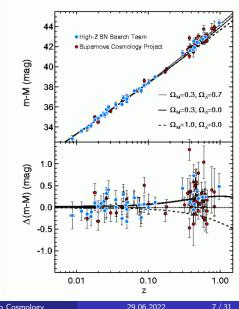
where H_0 is the Hubble constant.

• Velocity is proportional to the distance to the object, the Universe expands!

Big collaborations of scientists (Supernova Cosmology Project, High-z Supernova Search Team) in 1990 – 2000 collect a large number of supernovae type 1a observations and plot the Hubble diagram for large distances. 2011 Nobel Prize in physics:

o: Roy Kaltschmidt. Courtesy: ence Berkeley National Laboratory

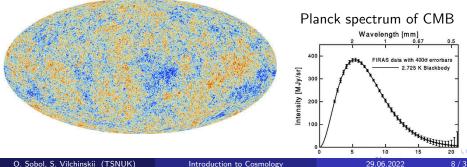
Saul Perlmutter



National University

Brian P. Schmidt

Adam G. Riess


The Universe is hot today:

One of the fundamental discoveries (1964) was cosmic microwave background (CMB) - these are photons with black-body spectrum with $T = 2.7255 \pm 0.0006$ K

 $T_0 = 2.7255 \pm 0.0006$ K

Measurements of spectrum show almost ideal Planck spectrum. The energy densities of CMB photons: $\rho_{\gamma,0} = \frac{\pi^2}{15} T_0^4 = 2.7 \cdot 10^{-10} \frac{\text{GeV}}{\text{cm}^3}$ The number density of CMB photons: $n_{\gamma,0} = 410 \frac{1}{cm^3}$

The discovery of CMB has shown that the Universe is hot today.

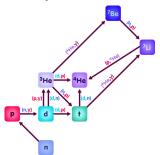
The Universe is baryon-asymmetric

- Current mean number density of antibaryons and baryons: $n_{\bar{b}}(t_0) = 0$, $n_b(t_0) = 2.7 \times 10^{-7} \text{ cm}^{-3}$, the Universe is baryon-asymmetric
- the time independent characteristic of the baryon abundance is the baryon-to-entropy ratio: the present entropy density in the Universe with the prescription that neutrinos are relativistic $s(t_0) = 3000 \text{ cm}^{-3}$

$$\Delta_b = \frac{n_b}{s} \simeq 0.86 \times 10^{-10}$$

What is the origin of this number? What is the nature of baryon asymmetry of the Universe? This is one of open questions

• Another time independent parameter, which characterizes the baryon asymmetry of Universe, is baryon-to-photon ratio: mean concentration of relic CMB photons with $T_{\gamma} = 2.7255 \pm 0.0006$ K: $n_{\gamma}(t_0) = \frac{2\zeta(3)}{\pi^2} T_{\gamma}^3 \approx 410 \text{ cm}^{-3}$

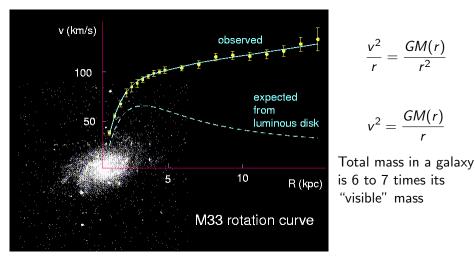

$$\eta_b = \frac{n_b}{n_\gamma} \simeq 6 \times 10^{-10}$$

 $\Delta_b = 0.14 \eta_b$

29.06.2022

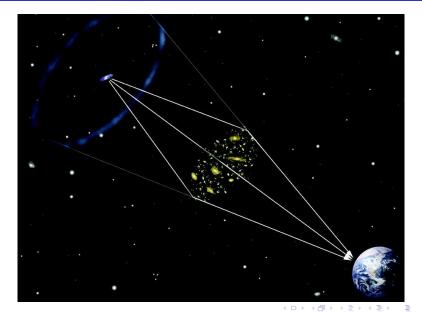
Chemical composition of the Universe

- Usual (baryonic) matter consists mostly from Hydrogen (75%) and Helium (25%)
- Such a big amount of Helium cannot be created in stars
- The lightest nuclei were generated in the early Universe:



Introduction to Cosmology

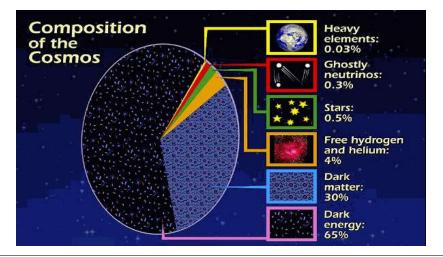
Evidence of dark matter


Galactic rotation curves

O. Sobol, S. Vilchinskii (TSNUK)

29.06.2022

Gravitational lensing



O. Sobol, S. Vilchinskii (TSNUK)

Introduction to Cosmology

29.06.2022

Current composition of the Universe

The nature of the Dark Energy and the Dark Matter are still unknown!!!

O. Sobol, S. Vilchinskii (TSNUK)

29.06.2022

イロト イボト イヨト イヨト

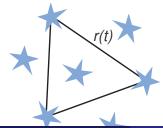
A basic property of Universe is that it expands: space stretches out. This is encoded in the space-time metric (FLRW):

$$ds^{2} = dt^{2} - a^{2}(t) d\vec{x}^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

where $d\vec{x}^2 = \gamma_{ij}dx^i dx^j$ – the distance on unit three-sphere ($\kappa = 1$) or Euclidean space ($\kappa = 0$) or hyperboloid ($\kappa = -1$), a(t) – the scale factor.

The coordinates x are comoving – they label positions of free, static particles in space (one has to check that world lines of free static particles obey x = const: as an example, distant galaxies stay at fixed x).

The Universe is expanding remaining homogeneous and isotropic!


In expanding Universe, the scale factor a(t) increases in time, so the distance between free masses of fixed spatial coordinates $x = r_0$ grows, $r(t) = a(t) r_0 \implies$ the galaxies run away from each other. Hubble law and Hubble

parameter:

$$\dot{r} = Hr, \ H = \frac{\dot{a}}{a}$$

Hubble constant:

$$H_0pprox 67.7\pm 0.4$$
 km/s Mpc

Age of Universe:

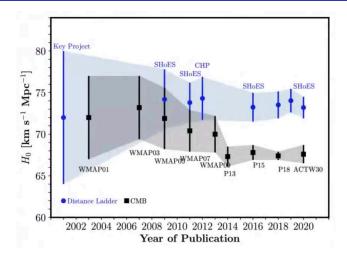
$$t_0 \sim H_0^{-1} \simeq 1.44 \cdot 10^{10}$$
 yr

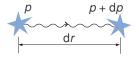
Velocity $v = \dot{r}$ is measured by redshift of spectral lines in remote galaxies

O. Sobol, S. Vilchinskii (TSNUK)

29.06.2022

H_0 tension




Figure: Evolution of the Hubble tension (determinations of H_0) in the last 20 years using direct measurements from the distance ladder (in **blue**) and CMB-based measurements (in **black**). Credit: Prof. Wendy Freedman.

O. Sobol, S. Vilchinskii (TSNUK)

Introduction to Cosmology

Cosmological redshift

Since the space stretches out, so does the wavelength of a photon – photon experiences redshift $\lambda_{obs} = (1+z)\lambda_{emit}$, $1+z = \frac{a_0}{2}$

Performing Lorentz transformation with $v_{\rm rel} \ll c$, we have (exercise)

Relative velocity: $v_{\rm rel} = H dr \ll c = 1$

$$dp = -rac{Ev_{
m rel}}{c^2} = -pHdt$$

$$\frac{dp}{p} = -Hdt = -\frac{da}{a} \quad \Rightarrow \quad p \propto \frac{1}{a}$$

For photons, $p = \hbar \omega / c$, which determines redshift z:

$$(1+z)\equiv rac{\omega_{
m em}}{\omega_{
m obs}}=rac{a_0}{a}$$

High redshift sources are far away from us both in space and in time.

O. Sobol, S. Vilchinskii (TSNUK)

Dynamics of cosmological expansion

Einstein equation (with two fundamental constants):

$$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi GT_{\mu\nu}+\Lambda g_{\mu\nu}$$

Using FLRW metric

$$ds^{2} = dt^{2} - a^{2}(t) d\vec{x}^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

get the Friedman equations, related $H = \frac{\dot{a}}{a}$, ρ , Λ and p (presure):

$$H^2 + \frac{\kappa}{a^2} = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3}, \qquad \dot{\rho} + 3H(\rho + p) = 0, \quad p = f(\rho). \implies$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3p\right) + \frac{\Lambda}{3}.$$

Currently accepted model is called ΛCDM ($\Lambda + Cold Dark Matter$)

this model runs into a singularity since $\ddot{a} < 0$ in the past

O. Sobol, S. Vilchinskii (TSNUK)

The Ω parameters

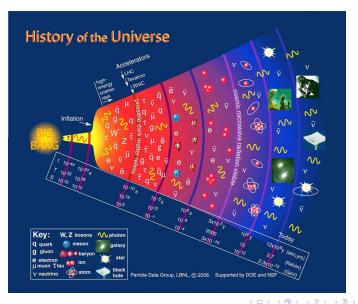
The Friedmann equation can be recast in the form

$$H^2 = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^2} + \frac{\Lambda}{3} = \frac{8\pi G}{3}\sum_i \rho_i$$

determines the critical density

$$\rho_c = \frac{3H_0^2}{8\pi G} \approx 10^{-29} \text{ g/cm}^3 = 10^{-5} \text{ GeV/cm}^3 = 10^{-46} \text{ GeV}^4, \qquad \Omega_i = \frac{\rho_i}{\rho_c}$$

$$\begin{split} H^2(t) &= H_0^2 \Big[\Omega_r \big(\frac{a_0}{a(t)} \big)^4 + \Omega_m \big(\frac{a_0}{a(t)} \big)^3 + \Omega_\kappa \big(\frac{a_0}{a(t)} \big)^2 + \Omega_\Lambda \Big] \\ &= H_0^2 \Big[\Omega_r (1+z)^4 + \Omega_m (1+z)^3 + \Omega_\kappa (1+z)^2 + \Omega_\Lambda \Big] \\ &\qquad \Omega_r + \Omega_m + \Omega_\kappa + \Omega_\Lambda = 1 \end{split}$$

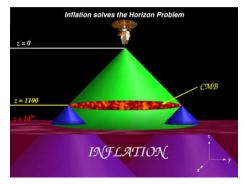

$$\label{eq:GLA} \begin{split} \Omega_\Lambda &\approx 0.69\,, \quad \Omega_m \approx 0.31\,, \quad \Omega_r \approx 8.6 \times 10^{-5}\,, \quad \Omega_\kappa = 0.001 \pm 0.002\\ \Omega_m \text{ consists of baryons and dark matter: } \Omega_b = 0.049, \Omega_{DM} \equiv 0.26$$

O. Sobol, S. Vilchinskii (TSNUK)

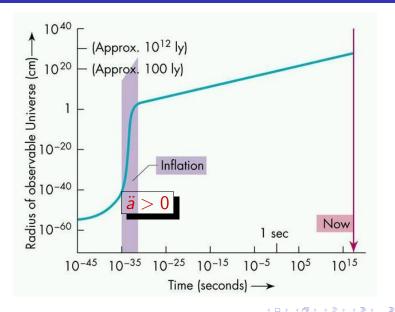
Thermodynamic history of the Universe - I

- $T \sim 200$ GeV: symmetric electroweak phase, g = 106.75
- $T \sim 120$ GeV: electroweak symmetry breaking (cross-over), annihilation of $t\bar{t}$ quarks, g = 96.25
- T < 80 GeV: annihilation of W^{\pm} , Z^0 , H^0 , g = 86.25
- T < 4 GeV: $b\bar{b}$ annihilation, g = 75.75
- T < 1 GeV: $\tau^- \tau^+$ annihilation, g = 72.25
- $T \sim 150$ MeV: epoch of QCD; quarks and gluons are confined, forming baryons and mesons. Light hadrons (pions), leptons and photons give g = 17.25
- T < 100 MeV: annihilation of pions π^{\pm} , π^{0} and muons μ^{\pm} . Remaining particles e^{\pm} , γ and ν give $g_{\epsilon} = 10.75$
- $\bullet~{\cal T}\sim 1$ MeV: decoupling of neutrinos
- T < 500 keV: annihilation of e^+e^- , g = 3.36

Thermodynamic history of the Universe - II


O. Sobol, S. Vilchinskii (TSNUK)

Introduction to Cosmology


29.06.2022

Problems of the hot Big Bang Theory

- Horizon problem
- Flatness problem
- Entropy problem
- Origin of inhomogeneities

Cosmological inflation

O. Sobol, S. Vilchinskii (TSNUK)

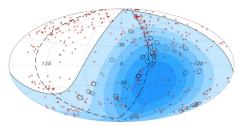
29.06.2022

Magnetic fields exist in all astrophysical objects on all observable scales of the visible Universe:

- Neutron stars: $10^{12} 10^{15}$ G
- **Stars**: 1 − 10³ G
- Planets: $\sim 1 \text{ G}$
- \bullet Galaxies: $\sim 10^{-5}-10^{-6}~\text{G}$
- Galaxy clusters: $\sim 10^{-6} 10^{-7} \mbox{ G}$

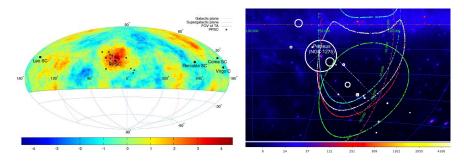


Figure: Optical and radio image of the Whirlpool galaxy M51 with MF configuration. Credit MPIfR Bonn


Since 2010, there is evidence of MF detection also on a cosmological scale — in the cosmic voids: $10^{-16} \text{ G} \lesssim B_0 \lesssim 10^{-10} \text{ G}$

Ultra-High-Energy Cosmic Rays deflection - I

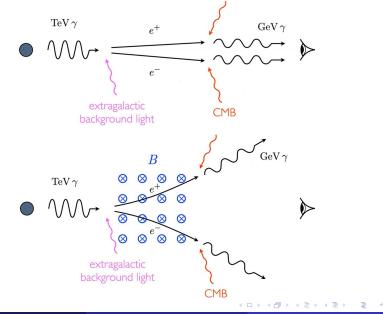
UHECR ($E \sim 10^{20} \text{ eV}!!!$) are deflected by cosmic magnetic fields. If the correlation length of the magnetic field λ_B is less than the distance D to the source of CR, the deflection angle reads as:


$$\theta = \frac{ZeB\sqrt{D\lambda_B}}{E_{UHECR}} \simeq 4^{\circ}Z \left[\frac{E_{UHECR}}{10^{20} \text{ eV}}\right]^{-1} \left[\frac{B}{10^{-9} \text{ G}}\right] \left[\frac{D}{50 \text{ Mpc}}\right]^{1/2} \left[\frac{\lambda_B}{1 \text{ Mpc}}\right]^{1/2}$$

Observations of 27 UHECR with E > 57 EeV, Pierre Auger Observatory (Argentina). [Pierre Auger Collaboration, Science **318**, 938 (2007)]

Correlation length $\lambda_B = \frac{1}{\rho_B} \int \frac{2\pi}{k} \rho_B(k) dk$ – characteristic spatial scale on which the MF changes.

Ultra-High-Energy Cosmic Rays deflection - II

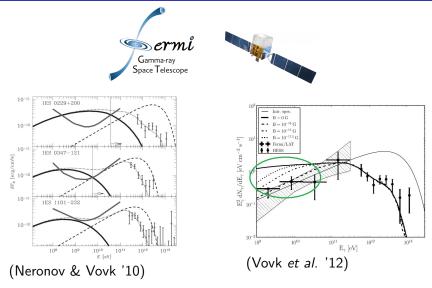


[TA Collaboration, arXiv:2110.14827]

[A. Neronov et al., arXiv:2112.08202]

- Probably, we can connect one of the "hot spots" in UHECR with Perseus-Pisces Supercluster of galaxies.
- Characteristic angular size of this area on the sky $\sim 10^{o}$.
- Distance to the source \sim 70 Mpc.
- Constraint from above for the MF strength $B \lesssim 10^{-10}$ G.

γ -rays from distant blazars - I



O. Sobol, S. Vilchinskii (TSNUK)

Introduction to Cosmology

29.06.2022

γ -rays from distant blazars - II

There is a lack of secondary (GeV range) γ -rays!

O. Sobol, S. Vilchinskii (TSNUK)

29.06.2022

Existing constrains on MF

• Constraint from **below** is from the analysis of γ -radiation of blazars: $B \ge 10^{-16}$ G.

[Tavecchio *et al.*, MNRAS **406**; Ando & Kusenko, Astrophys. J. Lett. **722**; Neronov & Vovk, Science **328**]

• Constrains from **above** follow from the analysis of the anisotropy spectrum of CMB and UHECR deviation: $B \le 10^{-10}$ G.

[Neronov et al., arXiv:2112.08202]

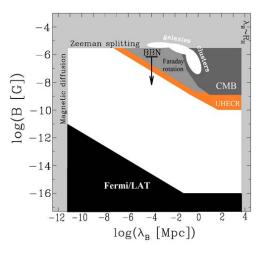
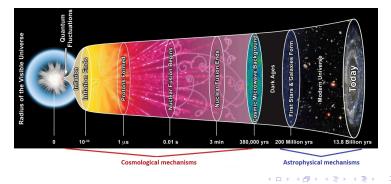



Figure: Summary of constrains on B and λ_B [Neronov&Vovk, Science **328**, 73 (2010)] and [Neronov et al., arXiv:2112.08202]

When and how could MFs arise in the Universe?

There are two different hypotheses for the generation of seed MF:

- Astrophysical generation during the structures formation: Biermann battery, adiabatical contraction, dynamos, ...
- **Cosmological** generation in a very early Universe: phase transitions, reheating, inflation, ...

If MF were generated before the BBN, we get a new source of information about a very early Universe:

- Abundances of light elements in the Universe
- CMB spectrum
- Large-scale structure of the Universe
- Primordial gravitational waves (???)
- Relic neutrinos (???)
- Magnetic fields in voids!!!

Thank you for your attention!