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Beginnings of software for HEP

Bubble chamber
Donald Glaser
1960

wikipedia Nobel Prize

CERN-PHOTO-847-106

Scanning pictures from the 2m Hydrogen
Bubble Chamber,
Aug 1974

CERN-PHOTO-7408141-1
More details on bubble chambers
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https://en.wikipedia.org/wiki/File:Nobel_Prize.png#/media/File:Nobel_Prize.png
http://cds.cern.ch/record/2813396/files/PHOTO-847-106.JPG
http://cds.cern.ch/record/969037/files/7408141X.jpg
https://scoollab.web.cern.ch/bubble-chamber-pictures-classroom


Beginnings of software for HEP

OPEN-PHO-EXP-1972-001-11

OPEN-PHO-EXP-1972-001-7
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https://cds.cern.ch/record/2307419
https://cds.cern.ch/record/2307419


Beginnings of software for HEP

Multi-wire proportional chambers (MWPC)

CERN 7304218

Georges Charpak

1992
wikipedia Nobel Prize

C. Joram
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https://mediastream.cern.ch/MediaArchive/Photo/Public/1973/7304218/7304218/7304218-A4-at-144-dpi.jpg
https://en.wikipedia.org/wiki/File:Nobel_Prize.png#/media/File:Nobel_Prize.png
https://indico.cern.ch/event/414089/attachments/844949/1175513/a02876s1t2.pdf


Beginnings of software for HEP

CERN-PHOTO-202206-116-1

public-archive.web.cern.ch
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http://cds.cern.ch/record/2813716
https://public-archive.web.cern.ch/


Typical data processing at HEP experiments

W. Pokorski
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https://indico.cern.ch/event/664126/contributions/2711782/attachments/1532229/2398674/HepComp.pdf


Typical data processing at HEP experiments

Front. Big Data, 07 May 2021 — doi.org/10.3389/fdata.2021.661501
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https://www.frontiersin.org/article/10.3389/fdata.2021.661501 


HEP software

• Software
◦ Estimated to be around 50M lines

of C++
◦ Which would cost more than

500M $ to develop commercially

• Computing
◦ LHC experiments use about 1M

CPU cores every hour of every day
◦ we have around 1000PB of data
◦ with 100PB of data transfers per

year (10-100Gb links)
[G. Stewart]

github.com/karlrupp/microprocessor-trend-data
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https://indico.cern.ch/event/942142/contributions/4003253/attachments/2105710/3541240/HSF_-_Geant_4_Collaboration_2020-09.pdf
https://github.com/karlrupp/microprocessor-trend-data


Just a few software packages in use
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HL-LHC

The High Luminosity Large Hadron Collider (HL-LHC) is an upgrade of the LHC which
aims to achieve instantaneous luminosities a factor of five larger than the LHC
nominal value, thereby enabling the experiments to enlarge their data sample by one
order of magnitude compared with the LHC baseline programme.

lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
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https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htl


Computing challenges ahead

Disk storage
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://twiki.cern.ch/twiki/pub/CMSPublic/CMSOfflineComputingResults/cpu_cms2021.pdf


Computing challenges ahead

Tape storage
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://twiki.cern.ch/twiki/pub/CMSPublic/CMSOfflineComputingResults/cpu_cms2021.pdf


Computing challenges ahead

CPU time
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://twiki.cern.ch/twiki/pub/CMSPublic/CMSOfflineComputingResults/cpu_cms2021.pdf


Computing challenges ahead

CPU time: simulation

Data Proc

7%

MC-Full(Sim)

24%

MC-Full(Rec)
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MC-Fast(Sim)
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Tot: 33.8 MHS06*y

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy Ions
Data Deriv
MC Deriv
Analysis

CERN-LHCC-2022-005

C. Rama, 2018

LHCb
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://cds.cern.ch/record/2631791/files/fastcalo_lhcb_chep18%20rama%2009.07.pdf


Simulation of particle passage through matter

Front. Big Data, 07 May 2021 — doi.org/10.3389/fdata.2021.661501
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https://www.frontiersin.org/article/10.3389/fdata.2021.661501 


Why do we need simulation?

• Before building the detector - to design it;

• To operate the detector - background simulation, ...;

• For data analysis - to understand known and new phenomena;

15/53



HEP detector: CMS

CERN-PHOTO-201703-062-52
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https://cds.cern.ch/images/CERN-PHOTO-201703-062-52/


Simulation beyond HEP

CMS-PHO-GEN-2017-009-6
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https://cms.cern/content/security-and-environmental-protection


Simulation beyond HEP

Nature volume 552, pages 386–390 (2017)
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https://doi.org/10.1038/nature24647


Simulation beyond HEP

Phys. Med. 33 (2017)
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http://dx.doi.org/10.1016/j.ejmp.2017.01.007


Simulation beyond HEP

XMM Newton X-Ray telescope
20/53

https://www.esa.int/Enabling_Support/Operations/XMM-Newton_operations


What is simulation?

A “virtual” experiment.

• Take known physics;

• Start from initial conditions (particles, materials, ...);

• Calculate final conditions;

Analytically? ... No!
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Buffon’s needle

Wolfram

G. Holton, Value-at-Risk

a ⩽ l sin θ

• One of the oldest problems in the field of geometrical
probability, first stated in 1777.

• Drop a needle on a lined sheet of paper and determine
the probability of the needle crossing one of the lines.

• For l < d :

P =

∫ pi

θ=0

∫ l sin θ

a=0

1

dπ
da dθ =

2l

dπ
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https://mathworld.wolfram.com/BuffonsNeedleProblem.html
https://www.value-at-risk.net/monte-carlo-simulation-example-approximating-pi/


Buffon’s needle

Wikimedia Commons

Probability P is directly related to
the value of π.
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https://commons.wikimedia.org/wiki/File:Buffon_needle_experiment_compressed.gif


pi estimation

• Described by Laplace in 1886.

• Take circle of radius r = 1 inscribed in
a square.

• Probability of random points falling
inside the circle: P = π

4

• How to estimate π?
◦ Draw uniformly N random points (x , y) from

(−1, 1) range.
◦ Count the C points for which x2 + y2 < 1.
◦ The ratio C

N
converges towards π/4.

Wikimedia Commons

• Can be easily extended to any distribution

M. Loem, Towards Data Science24/53

https://commons.wikimedia.org/wiki/File:Pi_30K.gif
https://towardsdatascience.com/monte-carlo-integration-and-sampling-methods-25d5af53e1


Random processes

Random (stochastic) processes are widely used as mathematical models of phenomena
that appear to vary in a random manner.

• Result cannot be specified in advance of observing it.

• Probabilities are used to describe the process.

• Discrete processes:
◦ throwing a dice f ufl;

◦ selecting a decay channel for an unstable particle;

◦ described by probabilities of events;

• Continuous processes:
◦ decay time of an unstable particle;

◦ described by probability density function (PDF);

p(x)

x1 x2 x3 x4 x5

x

p(x)
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Simulation of stochastic processes

Simulation of natural (stochastic) laws = reproduction of probability distributions.

Generation of samples that follow probability distributions (f(x)) means throwing
(many) random numbers.

A sequence of random numbers is a set of numbers that have nothing to do with the
other numbers in the sequence.

In computer programs we use pseudo-random numbers.
Linear congruential generator:

In+1 = (aIn + c) mod m

e.g. m = 231, a = 1103515245, c = 12345 (for glibc (gcc) implementation)

26/53

https://sourceware.org/git/?p=glibc.git;a=blob;f=stdlib/random_r.c;hb=glibc-2.33#l364


Discrete sampling

p(x)

x1

p1

x2

p2

x3

p3

x4

p4

x5

p5

5∑
i=1

pi = 1

0 p1 p1 + p2 p1 + p2 + p3 . . . 1

ξ

x3

1. Split [0, 1] into intervals
corresponding to discrete
probabilities pi .

2. Generate a random number
ξ ∈ [0, 1].

3. Look in which interval it falls.
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Continuous sampling - direct method

x

PDF (x)

0 a b

∫ b

a
p(x)x. = 1

x

CDF (x)

0

1

a b

ξ

x̂

P(x) =

∫ x

a
p(x)dx

1. For probability density function
p(x) find the cumulative
density function P(x).

2. Generate a random number
ξ ∈ [0, 1].

3. Find x = x̂ for which P(x) = ξ.

x̂ = P−1(ξ)
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Continuous sampling - accept–reject method

M. Loem, Towards Data Science

1. Generate two random numbers
ξx ∈ [0, 1] and ξy ∈ [0, 1].

2. Scale them if necessary:
xi = ξx , yi = Lξy .

3. If yi > p(xi ) ⇒ reject xi ,
If yi ⩽ p(xi ) ⇒ accept xi .

4. Fraction of accepted points is
equal to fraction of area below
curve p(x).
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https://towardsdatascience.com/monte-carlo-integration-and-sampling-methods-25d5af53e1


Simple example: Particle decay in flight

• Spontaneous process of an unstable particle.

• Decay time is a random value with probability density function

f (t) =
1

τ
exp

(
− t

τ

)
, t ⩾ 0

τ is the mean life of particle

• Probability that particle decays before time T is given by CDF

F (t) = 1− exp
(
− t

τ

)
which can be used to sample directly.

ξ1 ∈ [0, 1] → t̂ = τ ln(1− ξ1)

• Random angles are chosen for decay products, e.g. θ1 and θ2 (in rest
frame).

• Decay products are boosted to lab frame.

t

f (t)

JabberWok, Wikipedia

`

`

JabberWok, Wikipedia
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https://commons.wikimedia.org/w/index.php?curid=16169488
https://commons.wikimedia.org/w/index.php?curid=16169552


Monte Carlo methods

• Monte Carlo name coined by Ulam and Metropolis in 1949 (Manhattan project).

• Recognition of newly invented computer power to application of statistical sampling
to solve .

• Metropolis (1948): First actual Monte Carlo calculations using a computer
(ENIAC).

• Berger (1963): First complete coupled electron-photon transport code that became
known as ETRAN.

• Exponential growth since the 1980’s with the availability of computers.
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Monte Carlo codes

Non-exhaustive list of Monte Carlo codes

• EM physics
◦ ETRAN (Berger & Seltzer; NIST)

◦ EGS4 (Nelson, Hirayama, Rogers; SLAC)

◦ EGS5 (Hirayama et al.; KEK/SLAC)

◦ EGSnrc (Kawrakow & Rogers; NRCC)

◦ Penelope (Salvat et al.; U. Barcelona)

• Hadronic physics / general purpose
◦ Fluka (Ferrari et al., CERN/INFN)

◦ Geant4 (Geant4 Collaboration)

◦ MARS (James & Mokhov; FNAL)

◦ MCNPX / MCNP5 (LANL)

◦ PHITS (Niita et al.; JAEA)

32/53



Geant4

Geant4 is a toolkit used to simulate particle passage through matter.

• Non-deterministic:
◦ no equations to be solved,
◦ use of random numbers to reproduce distributions.

• General code:
◦ allows to describe different geometries (shapes, materials),
◦ contains distributions describing various physics processes.

• Finds application in many areas:
◦ high energy physics,
◦ astrophysics,
◦ medical physics,
◦ industry.

• Toolkit:
◦ no main program, set of tools that allows to build user

applications.

54.46 ps 33/53



How does simulation work?

• Track one particle at a time.

• Consider particle passage in steps.

• For each step:
◦ Determine step length and interaction (if

any)from cross-sections (probabilities) of
physics processes, and geometrical boundaries.

◦ Deposit energy.

◦ If physics process creates new particles, add
them to the list.

◦ Move particle to new position, taking into
account electromagnetic field.

◦ If particle has energy E > 0 and is still within
detector (“world”), repeat. Otherwise, take
new particle.

start point

ste
p

zero energy
end point:

geometry
boundary

geometry
boundary

physics interaction
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Computing challenges ahead

CPU time: simulation

CERN-LHCC-2022-005
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CERN-LHCC-2022-005
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/


How we simulate particles?

tracker

electromagnetic

calorimeter

hadronic
calorimeter

region:

tracker

region:

calorimeters

Fast simulation is a shortcut to the standard tracking and detailed simulation.
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,,Classical” shower parameterisation

f (t, r , φ) = f (t)f (r)f (φ)

longitudinal profile lateral profile

t
φ

r
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Neural networks

source
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http://www.mplsvpn.info/2017/11/what-is-neuron-and-artificial-neuron-in.html


Model training

source

1st step: Pass independent input variables and assign weights

2nd step: Apply activation function to the sum of inputs and
weights. Neurons learn which signal to pass.

3rd step: Generate output and calculate cost function to
provide feedback to assignment of weights.

Goal: Train network to provide best prediction.
source
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https://medium.com/@eshant.sah/deep-learning-in-simple-words-d6e027468836
https://www.ibm.com/cloud/learn/neural-networks


Neural networks

source
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https://towardsdatascience.com/back-propagation-the-easy-way-part-2-bea37046c897


Fast simulation with generative models

openai.com

• Recent work mostly on ML-aided fast simulation;

• Generative networks;

• ‘Learning’ data in the training process, then
generation of new samples;

freecodecamp.org, T. Silva

GAN

ai-odyssey.com

VAE
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https://openai.com/blog/generative-models/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://ai-odyssey.com/2017/02/07/autoencoders%E2%80%8A/


Generative adversarial network (GAN)

kaggle.com
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https://www.kaggle.com/code/theblackmamba31/generating-fake-faces-using-gan/notebook


CaloGAN

M. Paganini et al. (2017)

• ATLAS inspired detector geometry
◦ Three layers; different depth and cell size
◦ No accordion shape, predefined window

• Trained to generate energies in cells
◦ Layer0: 3x96
◦ Layer1: 12x12
◦ Layer2: 12x6

• Particle incident perpendicular to the centre of
calorimeter

• Uniform energies between 1 and 100GeV for three
particle types
◦ Separate model per particle (e±, γ, π± )
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https://arxiv.org/abs/1712.10321


CaloGAN

M. Paganini et al. (2017)
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https://arxiv.org/abs/1712.10321


Variational Auoencoder (VAE)

B. Dillon
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https://indico.cern.ch/event/980214/contributions/4413712/attachments/2278254/3870596/ml4jets_talk_2021.pdf


BIBAE

E. Buhmann et al. (2005)

E. Buhmann (2021)

• Dataset from electromagnetic calorimeter for ILD

• 30 active silicon layers with 20 tungsten absorbers 2.1 mm thick followed
by 10 absorbers 4.2 mm thick

• 5 × 5 mm2 cell sizes and a rectangular grid of 30× 30× 30 cells
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https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1051/epjconf/202125103003


BIBAE

E. Buhmann et al. (2005)

E. Buhmann (2021)
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https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1051/epjconf/202125103003


Geant4 Par04 example

e−

r
φ

P segments

z

R slices

N layers

xy

z
x

z

10GeV e−

x

y

• examples/extended/parameterisations/Par04 available in Geant4 11.0 release (Dec 2021)

• Energy scored independently on detector readout in cylindrical mesh around the incident particle achieving
highly granular shower outputs

• Cell dimensions expressed in units of X0 and RM : ∆r ≈ 0.75X0, ∆z ≈ 0.25X0

• EM showers simulated for different materials (in current study: Si-W, scintillator-Pb, used to pre-train
neural network (variational autoencoder)

• Full sim used to produce training and validation data dataset is available on Zenodo
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VAE within Geant4 Par04 example
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Physics performance studies
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Meta-learning

‘Traditional‘ ML training

our geometry train
trained
model

Meta-learning

1st geometry

2nd geometry
train

initialization
weights

done by framework
provider, not user

our geometry

initialization
weights

adapt trained
model

Our geometry is PbWO4

• Training time:
◦ ‘Traditional‘: 20min for 400 steps,

3 h for 4000 steps
◦ Adaptation: 20 s for 400 steps

• Simulation time:
◦ ∼ 50× speed-up at extremely high

granularity (40 k deposits per
shower) → can be faster!
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calochallenge.github.io/homepage/
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https://calochallenge.github.io/homepage/


Thank you!

anna.zaborowska@cern.ch
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