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HIGH LUMINOSITY TRACK RECONSTRUCTION
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WHY HIGH LUMINOSITY PHYSICS?

1. Better reach for Supersymmetry discovery:

a) Electroweakino particles produced by much greater 

range of chargino masses

b) Gluino exclusion from channels across 0.7-2.0TeV 

to channels across 2.5-3.2TeV

2. Sensitive to resonances (W’, Z’) up to 6-8TeV

3. W mass precision improvement from 

±9.4MeV to ±6MeV
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ATL-PHYS-PUB-2018-048

LHC Long Term

…

https://www.science.org/doi/10.1126/science.abk1781
https://indico.cern.ch/event/765096/contributions/3295995/attachments/1785339/2906404/HLLHC.pdf
http://cdsweb.cern.ch/record/2651927/files/ATL-PHYS-PUB-2018-048.pdf
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
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TASKS IN AN HL-LHC DETECTOR

 In order to perform the analysis that leads to discovery (e.g. of dark matter, extra dimensions, SUSY, …), need to 

make sense of the detector read-out

 There are many tasks required to reconstruct the physics event behind the read-out
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Vertex 

Reconstruction
Jet Tagging Pile-up Removal

Missing Energy 

Reconstruction
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TASKS IN AN HL-LHC DETECTOR

 In order to perform the analysis that leads to discovery (e.g. of dark matter, extra dimensions, SUSY, …), need to 

make sense of the detector read-out

 There are many tasks required to reconstruct the physics event behind the read-out
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Vertex 

Reconstruction
Jet Tagging Pile-up Removal

Missing Energy 

Reconstruction

These all require accurate 

track reconstruction
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TRACK RECONSTRUCTION 
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 Protons collide in center of detector, “shattering” into thousands of 

particles

 The charged particles travel in curved tracks through detector’s 

magnetic field (Lorentz force)

 A track is defined by the hits left as energy deposits in the detector 

material, when the particle interacts with material

 The goal of track reconstruction:

Given set of hits from particles in a detector, assign label(s) to each hit.

Perfect classification: All hits from a particle (and only those hits) share the 

same label
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REPRESENTATION OF COLLISIONS
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COMPUTE SCALING FOR HIGH LUMINOSITY
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ATLAS Computing Requirements Over Time ML Image Classification Efficiency Over Time

62 million

parameters

5 million

parameters

CERN-LHCC-2022-005

http://cdsweb.cern.ch/record/2802918
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TEASER: GRAPH-BASED PIPELINE FOR TRACK RECONSTRUCTION

 Using graph-based ML, can perform track 

reconstruction on High Luminosity detector 

events

 Comparable efficiency and fake rates to 

traditional algorithms

 Scaling that is approximately linear in event 

size (on open-source TrackML dataset)
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HOW SHOULD WE REPRESENT PARTICLE COLLISIONS?

Assuming we want to use deep learning, how can we represent a particle collision?

Image? Sequence? Set/Point Cloud?

For event collision as point cloud, with relationships between points, this is a graph.

Particle Track Reconstruction with Deep 

Learning, Farrell et al

Convolutional Neural Networks with Event 

Images…, ATLAS Collab.

Deep Sets based Neural Networks for 

Impact Parameter…, ATLAS Collab

https://dl4physicalsciences.github.io/files/nips_dlps_2017_28.pdf
https://cds.cern.ch/record/2684070/files/ATL-PHYS-PUB-2019-028.pdf
https://cds.cern.ch/record/2718948/files/ATL-PHYS-PUB-2020-014.pdf
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A 

COLLECTION 

OF NODES

NODE

WHAT IS A GRAPH?
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AND EDGES

EDGE

WHAT IS A GRAPH?
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NODES + 

EDGES = 

DOUBLETS

DOUBLET

WHAT IS A GRAPH?
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NODES  

CAN HAVE 

FEATURES

NODE FEATURE

e.g. “West Oakland”

WHAT IS A GRAPH?

14



EP-IT Data Science Seminar, CERN, 18 MAY 2022

EDGES   

CAN HAVE 

FEATURES

EDGE FEATURE

e.g. “Under Maintenance 

– Single Track” 

WHAT IS A GRAPH?
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THE WHOLE 

GRAPH  

CAN HAVE 

FEATURES

GRAPH FEATURE

e.g. “Sunday Timetable” 
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GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS
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Given hits on 

layers of a detector

x direction

y 
d

ir
ec
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o

n



EP-IT Data Science Seminar, CERN, 18 MAY 2022 18

Connect the

hits in some way

x direction

y 
d

ir
ec

ti
o

n

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS
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• Tracks should be found

amongst the connected

nodes.

• Note the trade-off: Rather 

than needing to classify or 

cluster nodes with many 

labels, we only need binary 

classification of edges

• However, introduce the 

extra step of building tracks 

from classified edges

x direction

y 
d

ir
ec

ti
o

n

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS
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INTRO TO GRAPH NEURAL NETWORKS
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GRAPH NEURAL NETWORK APPLICATIONS

21

Travelling Salesman Problem
Knowledge Graph 

Comprehension

Image 

Comprehension

Molecular 

Chemistry

Protein

Comprehension
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GRAPH NEURAL NETWORK PROCEDURE
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Node features
Encoder

Node channels Message 

passing

Node 

Aggregation

Messages

Node channels

Task output 

layer

Node channels
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STEP 1: MESSAGE PASSING MECHANISM

For each node neighborhood:

a) Pass node channels through 

a multi-layer perceptron (MLP) 

encoder

b) Pass encoded channels along 

each edge to the central node 

of the neighborhood

Note: This is quite inexpensive 

since we store 𝑁𝑛𝑜𝑑𝑒𝑠 for 

backpropagation
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Figure inspired by Koshi et. al.
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Encoded channels

https://graphdeeplearning.github.io/files/informs-oct2019.pdf
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STEP 2: AGGREGATION
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Figure inspired by Koshi et. al.
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+ + =

Encoded channels

At each node:

Sum all messages

Note: Called isotropic 

message passing. 

Introduced as “Graph 

Convolution Network”

Input channels

+ ′

https://graphdeeplearning.github.io/files/informs-oct2019.pdf
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EDGE CHANNELS

 Isotropic message passing can’t 

differentiate importance of 

neighbors

 Anisotropic message passing: 

encode a combination of node and 

neighbor along each edge

 Much more expensive – now need 

to store 𝑁𝑒𝑑𝑔𝑒𝑠 for backpropagation

 But much more powerful

Found in “Graph Attention Network” 

and “Interaction Network”
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Pre-encoded channels

https://arxiv.org/pdf/2003.00982.pdf
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EDGE CHANNELS

 Can access contextual 

relationships
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THE LANDSCAPE OF GNNS

GNNs

CNNsRNNs

Cellular

Automata

Transformers

Grid 

adjacency
MLP + 1-pixel

Equivalency

https://arxiv.org/pdf/2012.09699.pdf

https://arxiv.org/pdf/1809.02942.pdf

https://citeseerx.ist.psu.edu/viewd

oc/download?doi=10.1.1.554.439

5&rep=rep1&type=pdf

Fully-

Connected

Linearly

Connected

= reduces to

Graphical

Automata

https://arxiv.org/pdf/2012.09699.pdf
https://arxiv.org/pdf/1809.02942.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf


GNNS ELSEWHERE IN PARTICLE PHYSICS
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High Lumi Generic 

Tracking

High Lumi CMS 

Calorimetry

LArTPC Particle 

Reconstruction

 Very large and active field of study!

 Comprehensive review of GNNs for Track Reconstruction - arXiv:2012.01249

 White paper on progress and future of the field – arXiv:2203.12852

Quantum Track 

Reconstruction

FPGA-based Track 

Reconstruction 

https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://arxiv.org/pdf/2204.01681.pdf
https://www.osti.gov/pages/servlets/purl/1826698
https://arxiv.org/abs/2012.01249
https://arxiv.org/abs/2203.12852
https://indico.cern.ch/event/852553/contributions/4057625/
https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full
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GRAPH-BASED TRACK RECONSTRUCTION

29
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WHO IS INVOLVED?

 Two groups worked on the results in this presentation, and both first tested methods on TrackML, 

based on the GNN-based reconstruction introduced in arxiv:2003.11603

 L2IT: Laboratoire des deux Infinis, institute based at the University of Toulouse, within the Institute 

of Nuclear Physics and Particle Physics

 Exa.Trkx: A DoE Office of Science-funded collaboration of LBNL, Caltech, FNAL, SLAC and a 

collaboration of US institutions including Cincinnati, Princeton, Urbana-Champaign, Youngstown 

State, and others
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GRAPH REPRESENTATION OF AN EVENT

 The goal of track reconstruction:

Given set of hits in a detector from 

particles, assign label(s) to each hit.

Perfect classification: All hits from a 

particle (and only those hits) share the 

same label

31

 What does it mean to represent an event with a graph?

 Treat each hit as a node

 A node can have features (e.g. position, energy deposit, etc.)

 Nodes can be connected by edges, that represent the possibility of belonging to the same track

 Goal: Use ML and/or graph techniques to segment or cluster the nodes to match particle tracks

 Proof-of-concept: TrackML community challenge dataset with simplified simulation
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PIPELINE OVERVIEW

 Current pipeline of the L2IT-Exatrkx collaborative effort

 Each stage offers multiple independent choices, depending on hardware and time constraints

32
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DATASETS
 Two datasets used to study this pipeline. For absolute clarity, when citing a result specific to one dataset, will 

place the badge of TrackML or ATLAS ITk on slide:

TrackML ATLAS ITk

 Mean number of spacepoints: 110k

 Simplified simulation: No secondaries and optimistic 

charge information

 Mean number of spacepoints: 310k

 Full simulation
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ATLAS ITK GEOMETRY

 Generation script* using Athena, 𝑡 ҧ𝑡 at 𝜇 = 200 : with 

statistics dominated by soft interactions

 ITk consists of barrel and endcap, each with pixels and strips:

 Spacepoints (3D representations of track hits) are 

defined depending on strip or pixel:

Cluster Spacepoint Silicon Track

𝑃𝑎𝑃𝑏

𝑃𝑎 𝑃𝑏

𝑃𝑎𝑃𝑏

𝑃𝑎, 𝑃𝑏

Pixel is trivial: Each 

spacepoint maps to one 

cluster, which can map to 

many particles 

Strip: Each spacepoint maps to two clusters – one on 

either side of strip, which can map to many particles 

*Thanks Noemi Calace

0: Pixel barrel

1: Pixel endcap

2: Strip barrel

3: Strip endcap

ATLAS ITk

https://gitlab.cern.ch/xju/athena/-/blob/my_dump/Tracking/TrkDumpAlgs/src/DumpObjects.cxx
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ATLAS ITK GEOMETRY

 Fiducial particles are charged, with 𝜼 ∈ [−𝟒, 𝟒], 

and production radius < 260mm

 Each event has O(15k) fiducial particles, O(300k) 

spacepoints

 We define background spacepoints as including:

 Those left by non-fiducial or intermediate particles (i.e. any 

particle barcodes not retained during simulation), or

 Those mis-constructed in the strip regions as ghost 

spacepoints

 An event has O(170k) background spacepoints

Cluster Spacepoint Silicon Track

Ghost spacepoint: Incorrectly constructed from 

clusters left by different particles

Cluster A Cluster B

Cluster C Cluster D

𝑃𝑎
𝑃𝑏

𝑃𝑎 𝑃𝑏
?

ATLAS ITk
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Metric 
Learning

Module
Map

or

Graph Construction

Hits Graph
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EDGE TRUTH DEFINITIONS

A
ll
 E

d
g
e

s

Matching PID 𝑚𝑃𝐼𝐷 Fake 𝑓

Non-target ǁ𝑡𝑃𝐼𝐷

Target 𝑡𝑃𝐼𝐷

Target Seq.

Truth 𝑡𝑆𝑒𝑞

Therefore, define efficiency and purity (note that we mask 

out sequential non-target) for a graph with edges 𝑒

Efficiency =
|𝑒 ∩ 𝑡𝑆𝑒𝑞|

|𝑡𝑆𝑒𝑞|
,  Purity =

|𝑒 ∩ 𝑡𝑆𝑒𝑞 − ሚ𝑡𝑆𝑒𝑞|

|𝑒 − ሚ𝑡𝑆𝑒𝑞|

Target particle

Non-target particle

𝑡𝑆𝑒𝑞

𝑓

ǁ𝑡𝑆𝑒𝑞

𝑡𝑃𝐼𝐷

ǁ𝑡𝑃𝐼𝐷

Target particle:

• 𝑝𝑇 > 1 GeV, and

• At least 3 SP on different modules, and

• Primary

ATLAS ITk
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MODULE MAP - DOUBLETS

 The idea: Build a map of detector modules, where a 

connection from module A 

to module B means that at least one true track has 

passed sequentially through A to B

 Step 1: Build all combinations of sequential doublets 

for an event, register an A-to-B entry if a doublet 

passes through. O(90k) events used to build these 

combinations

 Step 2: For each A-to-B entry, also register/update 

the max and min values of a set of geometric 

observables. Apply these cuts when building the 

graph in inference

Metric 
Learning

Module
Map

or

Graph Construction

Hits Graph

Map = {𝑚1: 𝑚2, 𝑚2: 𝑚3, … ,𝑚5:𝑚6}

Modules
𝑚6

𝑚5

𝑚4

𝑚3
𝑚2
𝑚1
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MODULE MAP – TRIPLETS

 The idea: Build a map of detector modules, where a connection from module A 

to module B to module C means that at least one true track has passed sequentially through A to B to C

 Step 1: Build all combinations of sequential triplets for an event, register an A-to-B-to-C entry if a triplet passes 

through

 Step 2: For each A-to-B-to-C entry, also register/update the max and min values of a set of geometric 

observables. Apply these cuts when building the graph in inference

Step 1 Step 2

Metric 
Learning

Module
Map

or

Graph Construction

Hits Graph
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METRIC LEARNING 

INTUITION

 Encode / embed input into N-

dimensional space

 Reward (low loss) matching 

pairs within unit distance

 Punish (high loss) 

mismatching pairs within unit 

distance

 Repeat for many pairs

MLP MLP

Repulsive training

Source Target Source Target

Attractive training

“Contrastive” hinge loss

𝑦 = −1
𝑦 = 1

Δ = 1 Δ = 1

𝑥

𝑥
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METRIC LEARNING

 The idea: Teach an MLP to embed spacepoint features (spatial and cell information)

 In this embedded space, all doublets in a given particle track are trained to be 

near each other (Euclidean distance 𝒙), using a contrastive loss function 𝐿:

 A hit in a track is trained to be closest to its preceeding and succeeding track hits

r

Embed into learned 

latent space

Connect all spacepoints

within radius r

All spacepoint pairs

joined into graph

Metric 
Learning

Module
Map

or

Graph Construction

Hits Graph

𝐿 =
𝑥, if true pair

max 0, 𝑟 − 𝑥 , if false pair
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FAST GRAPH CONSTRUCTION

• Nearest neighbor search is a 
bottleneck of the graph 
construction stage

• FAISS finding K=500 for 
N=100,000 ~ 700ms

• KNN is overkill – we don’t need 
explicit list of K sorted neighbours

• Built custom library on Fixed 
Radius Nearest Neighbour (FRNN) 
search algorithm

• Cell-by-cell grid search is much 
faster: [The complexity of finding fixed-

radius near neighbors. Bentley, et al 

1977]

Fast fixed-radius nearest neighbors: Interactive 

Million-particle Fluids, Hoetzlein (NVIDIA), 2014

Accelerating NN Search on CUDA for Learning Point Clouds, Xue 2020

TrackML

https://github.com/facebookresearch/faiss
https://github.com/lxxue/FRNN/tree/larged
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METRIC LEARNING - FILTERING

 Output graph of metric learning is impure: 0.2%

 Can pass edges through a simple MLP filter to filter out the easy fakes

 Improves purity to 2%, so graph can be trained entirely on a single GPU

Metric 
Learning

Module
Map

or

Graph Construction

Hits Graph

5
1

2 Radius

Graph5
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5
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5
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5
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Hinge 
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5
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5
1
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5
1

2 Cross 

Entropy 
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n
o
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n
o

rm

ATLAS ITk
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GRAPH CONSTRUCTION RESULTS

44

• Drop in efficiency at low 𝜂 due to poor barrel strip 

resolution (will discuss further!)

• Drop in efficiency at high 𝑝𝑇 due to low 

training statistics

ATLAS ITk
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Graph Graph Neural
Network

𝑣1
𝑘

𝑣2
𝑘
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𝑘 𝑣4

𝑘
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𝑘

𝑒03
𝑘 𝑒04

𝑘

Edge Labeling
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EDGE CLASSIFICATION WITH

GRAPH NEURAL NETWORK

1. Node features (spatial position) are encoded 

2. Encoded features are concatenated and 

encoded to create edge features

3. Edge features are aggregated around nodes 

to create next round of encoded node 

features (i.e. message passing)

4. Each iteration of message passing improves 

discrimination power

𝑣0
𝑘+1

= 𝜙(𝑣0
𝑘 , Σ𝑒0𝑗

𝑘+1)

𝑣1
𝑘 𝑣2

𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑣𝑖
𝑘 node features

𝑒𝑖𝑗
𝑘 edge features

at iteration 𝑘 𝑒01
𝑘 𝑒02

𝑘+1 = 𝜙 𝑣0
𝑘 , 𝑣2

𝑘 , 𝑒02
𝑘

𝑒03
𝑘 𝑒04

𝑘

INTERACTION

NETWORK

Battaglia, Peter, et al. 

"Interaction networks for 

learning about objects, 

relations and physics.“

2016.

https://arxiv.org/abs/1612.00222
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MEMORY MANAGEMENT

 Graph construction leads to very large graphs 

O(1m) edges, cannot fit training on A100 GPU 

with 32Gb memory

 Should not split the graphs up (leads to lower 

GNN accuracy)

 Solution A: Were previously using a 

compromising form of “gradient 

checkpointing” – reduced memory by 4x

 Now using maximal checkpointing, reduce 

memory further by 2x – just fits on A100

No checkpointing

Maximal checkpointing

Partial checkpointing

Graph Graph Neural
Network

𝑣1
𝑘 𝑣2

𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
𝑘 𝑒02

𝑘

𝑒03
𝑘 𝑒04

𝑘

Edge Labeling

Edge Scores
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TRAINING SOLUTIONS

 Solution B: Model offloading

 Each layer of GNN placed on GPU for 

forward and backward pass, but held 

on CPU otherwise

 Works well with TensorFlow, enabling 

training of O(1m) edge graphs

 Unable to integrate with Pytorch

pipeline

ZeRO-Offload: Democratizing Billion-Scale Model Training

arXiv: 2101.06840

Graph Graph Neural
Network

𝑣1
𝑘 𝑣2

𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
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𝑘

𝑒03
𝑘 𝑒04

𝑘

Edge Labeling

Edge Scores
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LOSS FUNCTION DESIGN

 The target of the GNN and track reconstruction is edges from 

primary particles with pT>1 GeV that have left at least 3 hits on different 

modules in the detector (see slide 12) 

 Have very small set of target edges (1-2% of edges are true target 𝑡𝑆𝑒𝑞)

 Solution: 𝑡𝑆𝑒𝑞 𝑦 = 1 weighted up by × 10, sequential background ǁ𝑡𝑆𝑒𝑞 masked, 

all others 𝑦 = 0

 Weighting gives much better performance at high-efficiency

 Masking gives much better performance around the 1 GeV cutoff

Graph Graph Neural
Network

𝑣1
𝑘 𝑣2

𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
𝑘 𝑒02

𝑘

𝑒03
𝑘 𝑒04

𝑘

Edge Labeling

Edge Scores
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GNN EDGE CLASSIFICATION RESULTS

50

 Edge cut of 0.5 on output of GNN edge classifier

ROC CURVE & EDGEWISE PERFORMANCE VS. 𝑝𝑇

ATLAS ITk
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GNN EDGE CLASSIFICATION RESULTS
EDGEWISE PERFORMANCE VS. 𝜂

 Again, see a drop in performance at low 𝜂

ATLAS ITk
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BARREL STRIP MISCLASSIFICATION

ATLAS ITk

Nature of false positive edges Location of false positive edges

43%: “True” 

ghosts

37%: Fakes



Fake edges: 37%

Edges between SP from particle A and particle 

B. i.e. The GNN is “wrong”
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BARREL STRIP MISCLASSIFICATION

“True” ghost edges: 43%

Edges between SP from 

particle A, and a ghost 

SP of clusters from 

particle A and particle B. 

I.e. The GNN is “right”, 

the construction is 

“wrong”

ATLAS ITk

𝑃𝑎 𝑃𝑏

Ghost

𝑃𝑎 Location of false positive edges
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STRIP MODULES: GHOSTS AND

Z-RESOLUTION

 Since spacepoints are constructed from pairs of 

clusters in the strip, could mis-construct and form a 

ghost

 These ghosts can be cleaned up in later stages of the 

reconstruction chain

 However, even for correctly matched clusters, there 

remains low z-resolution

 Consider this example

 Easily confuses GNN!

 Could fix by including underlying cluster information 

somehow… (e.g. heterogeneous node features)
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ATLAS ITk

Image courtesy of Jan Stark – thanks!

Cluster A

Cluster B

Constructed spacepoint

Ideal spacepoint
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Connected
Components

Connected
Components

+ Walkthrough

or

Graph Segmentation

Edge Scores Track Candidates
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 We now have labelled edges. Want to now label each node depending on connectivity. 

 Two distinct approaches: component-based segmentation, or path-based segmentation.

Component-based

Classified edges Ignore cut edges Label connected

components

Track #1

Track #2

1

1

1

2 2

2

E.g. connected components algorithm:

• Pros: Fast - 𝑂(𝑁𝑛𝑜𝑑𝑒𝑠)
• Cons: Can merge tracks into one candidate

Path-based

E.g. walkthrough algorithm:

Classified edges,

Starting node

Choose high

score junctions

Remove a high-

scoring path

Track #1
1 1

1

• Pros: Handles hits as a sequence, as a track should be

• Cons: Potentially slow - 𝑂(𝑁𝑒𝑑𝑔𝑒𝑠), needs a directed graph 

1

2

2
3

3

Connected
Components

Connected
Components

+ Walkthrough

or

Graph Segmentation

Edge Scores Track Candidates

TRACK CANDIDATES CONSTRUCTION
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 We now have labelled edges. Want to now label each node depending on connectivity. 

 Two distinct approaches: component-based segmentation, or path-based segmentation.

Component-based

Classified edges Ignore cut edges Label connected

components

Track #1

Track #2

1

1

1

2 2

2

E.g. connected components algorithm:

• Pros: Fast - 𝑂(𝑁𝑛𝑜𝑑𝑒𝑠)
• Cons: Can merge tracks into one candidate

Path-based

E.g. walkthrough algorithm:

Classified edges,

Starting node

Choose high

score junctions

Remove a high-

scoring path

Track #1
1 1

1

• Pros: Handles hits as a sequence, as a track should be

• Cons: Potentially slow - 𝑂(𝑁𝑒𝑑𝑔𝑒𝑠), needs a directed graph 

1

2

2
3

3

Connected
Components

Connected
Components

+ Walkthrough

or

Graph Segmentation

Edge Scores Track Candidates

TRACK CANDIDATES CONSTRUCTION

Both methods by construction

associate each hit with only one track
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TRACK CANDIDATES CONSTRUCTION

 Our specific algorithm combines the good features of each approach:

1. Connected Components 2. Walkthrough, a.k.a “Wrangler”

Classified edges Cut score < 0.2

Track #1

Track #2

1

2

2

3

4

𝐿1

𝐿2

Label simple

candidates

Walk through paths from 

starting node,

count length 𝐿

𝐿2 > 𝐿1

Track #3

Assign longest path

as candidate

Connected
Components

Connected
Components

+ Walkthrough

or

Graph Segmentation

Edge Scores Track Candidates

3



EP-IT Data Science Seminar, CERN, 18 MAY 2022

TRACK MATCHING DEFINITIONS

 𝑁(𝑃𝑖 , 𝐶𝑗) is the number of spacepoints shared by particle 𝑖 and candidate 𝑗

 Particle 𝑖 is called “matched” if, for some 𝑗, 
𝑁 𝑃𝑖,𝐶𝑗

𝑁(𝑃𝑖)
> 𝑓𝑡𝑟𝑢𝑡ℎ

 Candidate 𝑗 is called “matched” if, for some 𝑖, 
𝑁 𝑃𝑖,𝐶𝑗

𝑁(𝐶𝑗)
> 𝑓𝑟𝑒𝑐𝑜

 Particle 𝑖 and candidate 𝑗 are called “double matched” if, for some 𝑖 and 𝑗, 

𝑁 𝑃𝑖,𝐶𝑗

𝑁(𝑃𝑖)
> 𝑓𝑡𝑟𝑢𝑡ℎ and

𝑁 𝑃𝑖,𝐶𝑗

𝑁(𝐶𝑗)
> 𝑓𝑟𝑒𝑐𝑜

 𝑒𝑓𝑓 =
σ𝑖 𝑃𝑖 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

σ𝑖 𝑃𝑖
, 𝑝𝑢𝑟 =

σ𝑗 𝐶𝑗 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

σ𝑗 𝐶𝑗
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Standard matching: single-matched particles with 𝑓𝑡𝑟𝑢𝑡ℎ = 0.5
Strict matching: double-matched particles with 𝑓𝑟𝑒𝑐𝑜 = 1.0

Particle 1

Particle 2

Candidate 1
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TRACK RECONSTRUCTION RESULTS

60

• Fake rate is 𝑂(10−3) using standard truth 

matching
Standard matching: single-matched particles with 𝑓𝑡𝑟𝑢𝑡ℎ = 0.5
Strict matching: double-matched particles with 𝑓𝑟𝑒𝑐𝑜 = 1.0

ATLAS ITk
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TIMING AND SCALING PERFORMANCE

 Physics is important, but GNNs shine in scaling behavior

 When development began, graph-based pipeline started required 15 
sec for TrackML

 Implemented custom Fixed Radius Nearest Neighbor (FRNN) algo., 
cuGraph Connected Components algo., and Mixed Precision inference

 Now have sub-second TrackML inference on 16Gb V100 GPU

 Inference time scales approximately linearly across size of event, in 
TrackML

61

TrackML
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ONGOING WORK

62
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ONGOING WORK: HETEROGENEOUS NODE FEATURES

 Motivated by inconsistent performance across 

detector:

 Currently each node in graph uses same input 

feature set – spacepoint s = (𝑟, 𝜙, 𝑧)

 We could imagine using cluster-level information, e.g. position and shape of 

energy deposit

 But: this is not consistent across detector. Need different node and edge networks 

depending on detector region

63



0

1
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ONGOING WORK: HETEROGENEOUS NODE FEATURES

 To get intuition, consider simple filter 

MLP applied to two pixel nodes:

 To apply a filter MLP to a pixel (single cluster) and strip (double cluster) node 

combination, need a different MLP:

 Already gives better than homogeneous filter MLP (~2x construction purity)

0

1

0

1

𝑀𝐿𝑃𝑃𝑃( )

0

1

𝑀𝐿𝑃𝑆𝑃( )
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ONGOING WORK: HETEROGENEOUS GRAPH NEURAL NETWORK

 Exact same logic applies to GNN networks

 For a four-region heterogeneous GNN, we have four node encoders/networks (𝑁0, 𝑁1, 𝑁2, 𝑁3) and ten edge 

encoders/networks (𝐸00, 𝐸01, 𝐸02, 𝐸03, 𝐸11, … , 𝐸34, 𝐸44)

 Thus, is a larger model and takes longer to train

 But reduces GNN inefficiency and fake rate by approximately half

Node 

encoder 1

Edge encoder 

[1,1]

Edge encoder 

[0,1]

Node 

encoder 0

Edge encoder 

[0,0]
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ONGOING WORK: ACTS & ATHENA INTEGRATION

ACTS (A Common Tracking Software)

 A library for tracking that is independent of particular experiment or geometry

 Written in highly performant c++ and parallelized

66

A. Salzburger, et al.

https://arxiv.org/abs/1910.03128
https://indico.cern.ch/event/699252/contributions/2881457
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ONGOING WORK: ACTS & ATHENA INTEGRATION

Integration of GNN pipeline with ACTS

 Integration complete, with generic TrackFindingMLBased interface

 Uses TorchScript to call ML models (OnnxRuntime not yet fully compatible with GNN methods)

 Replaces seeding and track finding stages, produces protoTracks

67

A. Salzburger, et al.

https://github.com/xju2/acts/tree/xju/exatrkx-plugins
https://indico.cern.ch/event/699252/contributions/2881457
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ONGOING WORK: ACTS & ATHENA INTEGRATION

Athena

 Framework for ATLAS event generation, 

simulation, digitization, reconstruction 

and analysis

Integration of GNN pipeline with Athena:

 This is ongoing!
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https://atlassoftwaredocs.web.cern.ch/athena/athena-intro/
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OTHER ONGOING WORK

 Extending   TrackML inference timing and scaling studies to

 Investigating training and inference performance on lower 𝑝𝑇 tracks (i.e. < 1 GeV) 

and high 𝑝𝑇 tracks (i.e. > 10 GeV)

 Investigating performance on large radius tracks and dense track environments

 Direct comparison with combinatorial Kalman filter (current algorithm) efficiency 

and track parameter resolution 
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TrackML ATLAS ITk
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CONCLUSION

 A graph-based representation of particle collisions is intuitive and rich

 GNNs and other graph techniques are well-suited even to high luminosity events

 Produced first public results on official ATLAS ITk geometry using GNN-based track reconstruction 

pipeline

 Promising reconstruction performance, well-positioned for comparison with traditional algorithms 

 This is very early in development – many more improvements are in progress within Exatrkx+L2IT

 Also new techniques being invented in GNN/ML community every day
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THANKS FOR TUNING IN!

Links

ExaTrkx website ● L2IT website ● ExaTrkx paper ● L2IT paper ● Codebase

https://exatrkx.github.io/
https://www.l2it.in2p3.fr/
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03047.pdf
https://hsf-reco-and-software-triggers.github.io/Tracking-ML-Exa.TrkX/

