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HIGH LUMINOSITY TRACK RECONSTRUCTION
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WHY HIGH LUMINOSITY PHYSICS? Wino ¥ ¥, - W' 72 W™ 7° - 2L + MET final state

3 800F E
O, - ATLAS Simulation Preliminary Baseline Uncertainties J
53 100 (s=14Tev, 3000 b E
E 600K ATLAS 13 TeV, 80 fb™ =
1. Better reach for Supersymmetry discovery: o 95% CL exclusion (£1,,,), multi-binJ
. . 500 - e 5c discovery, inclusive B
a) EIectroweakmq particles produced by much greater 4003_ Al limits at 95% CL
range of chargino masses n 3
b)  Gluino exclusion from channels across 0.7-2.0TeV 3005_ oo N E
to channels across 2.5-3.2TeV 200 . ASSPNPEPELEEEED . Ry =
2. Sensitive to resonances (W', Z’) up to 6-8TeV 100" *° =
: | | 111 | l L1 1 1 I L1 1 1 | 1 I“I | | L1 1 1 | 1 ‘I‘ 11 l L1 1 I:
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https://www.science.org/doi/10.1126/science.abk1781
https://indico.cern.ch/event/765096/contributions/3295995/attachments/1785339/2906404/HLLHC.pdf
http://cdsweb.cern.ch/record/2651927/files/ATL-PHYS-PUB-2018-048.pdf
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

TASKS IN AN HL-LHC DETECTOR

= |n order to perform the analysis that leads to discovery (e.g. of dark matter, extra dimensions, SUSY, ...), need to
make sense of the detector read-out

=  There are many tasks required to reconstruct the physics event behind the read-out

pile'up vertex —5 tracks b jet

@ secondaryvery | b hadron

------ impact
parameter

secondary

decay chain
vertex

proton bung

primary vertex

do‘\

Missing Energy

Vertex
Reconstruction

Reconstruction

Pile-up Removal

Jet Tagging
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TASKS IN AN HL-LHC DETECTOR

= |n order to perform the analysis that leads to discovery (e.g. of dark matter, extra dimensions, SUSY, ...), need to
make sense of the detector read-out

=  There are many tasks required to reconstruct the physics event behind the read-out

These all require accurate
track reconstruction

ne A K TrkX EP-IT Data Science Seminar, CERN, 18 MAY 2022
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TRACK RECONSTRUCTION
= Protons collide in center of detector, “shattering” into thousands of
particles
= The charged particles travel in curved tracks through detector’s
magnetic field (Lorentz force)
\‘
= Atrack is defined by the hits left as energy deposits in the detector
—

material, when the particle interacts with material

= The goal of track reconstruction:
Given set of hits from particles in a detector, assign label(s) to each hit.

Perfect classification: All hits from a particle (and only those hits) share the
same label

e B K(Trkx EP-IT Data Science Seminar, CERN, 18 MAY 2022



REPRESENTATION OF COLLISIONS
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COMPUTE SCALING FOR HIGH LUMINOSITY

ATLAS Computing Requirements Over Time ML Image Classification Efficiency Over Time
—T T Aun |3 (‘u|=5‘|5) —T T LI I Rl:n ? (LL|=8EI3_1?O)| T T T Rl;m ir) (u|=1 165_?0(1) T 44x less compute required to get to AlexNet performance 7 years later (linear scale)
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http://cdsweb.cern.ch/record/2802918

TEASER: GRAPH-BASED PIPELINE FOR TRACK RECONSTRUCTION

= Using graph-based ML, can perform track 3251
. . . . 3.00
reconstruction on High Luminosity detector . g
events - ,,;
. éz.zs “ﬁ*‘?

= Comparable efficiency and fake rates to 5 /

traditional algorithms . 7

/
1.50 1 o4

® Scaling that is approximately linear in event .

size (on open-source TrackML dataset)

Q Q Q Q Q Q
S & & & & &
© A Q® S S NS
Number of spacepoints
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HOW SHOULD WE REPRESENT PARTICLE COLLISIONS?

Assuming we want to use deep learning, how can we represent a particle collision?

Image?

3 1 ATLAS Simulation Preliminary =
|.PowhegPythia Z—p, ¥j1) ~ 34, /s = 13 TeV
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Convolutional Neural Networks with Event
Images..., ATLAS Collab.
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Particle Track Reconstruction with Deep

Learning, Farrell et al

Set/Point Cloud?

Track n
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Deep Sets based Neural Networks for

Impact Parameter..., ATLAS Collab

For event collision as point cloud, with relationships between points, this is a graph.
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https://dl4physicalsciences.github.io/files/nips_dlps_2017_28.pdf
https://cds.cern.ch/record/2684070/files/ATL-PHYS-PUB-2019-028.pdf
https://cds.cern.ch/record/2718948/files/ATL-PHYS-PUB-2020-014.pdf

WHAT IS A GRAPH? e o

A .0 o]
COLLECTION °

OF NODES . O
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WHAT IS A GRAPH?

AND EDGES

EDGE

e B K(Trkx EP-IT Data Science Seminar, CERN, 18 MAY 2022 12



WHAT IS A GRAPH?

NODES +
EDGES =
DOUBLETS

DOUBLET

e B K(Trkx EP-IT Data Science Seminar, CERN, 18 MAY 2022 13



WHAT IS A GRAPH?

NODES
CAN HAVE
FEATURES

NODE FEATURE —

e.g. “West Oakland”
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WHAT IS A GRAPH?

EDGES
CAN HAVE
FEATURES

EDGE FEATURE
e.g. “Under Maintenance
- Single Track”

/
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Pittsburg/
Bay Point

North Concord/ i
Martinez Change at platform

Concord

Pleasant Hill/
Contra Costa Centre

Walnut Creek

Cen

THE WHOLE
GRAPH
CAN HAVE

West Oakland 11-12th St/Oakland City Center
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GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

& | i : ; : ; : ’ ' Given hits on
s layers of a detector
x direction

e B K(Trkx EP-IT Data Science Seminar, CERN, 18 MAY 2022 17




GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

7.5 4

5.0+

Connect the
hits in some way

0.0 4

y direction

—2.5

=5.0 1

-7.5 1

-10.0 T T T T
] 10

x direction
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GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

10.0

* Tracks should be found
amongst the connected
nodes.

* Note the trade-off: Rather
than needing to classify or
cluster nodes with many
labels, we only need binary
classification of edges

* However, introduce the
extra step of building tracks
from classified edges

75

5.0

25

0.0

y direction

=25

-5.0

=75

-10.0

x direction
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INTRO TO GRAPH NEURAL NETWORKS

e B K(Trkx EP-IT Data Science Seminar, CERN, 18 MAY 2022 20



GRAPH NEURAL NETWORK APPLICATIONS

ADDING MORE. STOPS TBKES

LONGER- BND LONGER. AND LONGER. TO FiGaURE it OUT
. Knowledge Graph
Travelling Salesman Problem g . P
Comprehension
Valid amino acid

Molecule Cluster graph sequences
s Y
@ o N ’
1 1
@ l
1

wee OO > OO0

Molecular
Chemistry

e B A X TrkX EP-IT Data Science Seminar, CERN, 18 MAY 2022

Image
Comprehension

Folded proteins

Protein
Comprehension




GRAPH NEURAL NETWORK PROCEDURE

Messages

N

Node features Node channels = VEEEyeE Node
- Encoder — passing Aggregation
\/ Node channels

Node channels
Task output
layer

™ ¥ TrkX EP-IT Data Science Seminar, CERN, 18 MAY 2022 22




I Input channels

STEP 1: MESSAGE PASSING MIECHANISM

Encoded channels

For each node neighborhood:

a) Pass node channels through
a multi-layer perceptron (MLP)
encoder

b) Pass encoded channels along
each edge to the central node
of the neighborhood

Note: This is quite inexpensive
since we store N, 4.5 fOr
backpropagation

Figure inspired by Koshi et. al.

P B X TrkX EP-IT Data Science Seminar, CERN, 18 MAY 2022 23


https://graphdeeplearning.github.io/files/informs-oct2019.pdf

I Input channels
STEP 2: AGGREGATION

Encoded channels

At each node:
Sum all messages

Note: Called isotropic
message passing.

Introduced as “Graph
Convolution Network”

Figure inspired by Koshi et. al.

EP-IT Data Science Seminar, CERN, 18 MAY 2022 24


https://graphdeeplearning.github.io/files/informs-oct2019.pdf

I Pre-encoded channels

EDGE CHANNELS

Encoded channels

= |sotropic message passing can'’t
differentiate importance of
neighbors

= Anisotropic message passing:
encode a combination of node and
neighbor along each edge

=  Much more expensive - now need
to store Neg4es fOr backpropagation

m  But much more powerful

Found in “Graph Attention Network”
and “Interaction Network”

e B K(Trkx EP-IT Data Science Seminar, CERN, 18 MAY 2022 25


https://arxiv.org/pdf/2003.00982.pdf

I Pre-encoded channels

EDGE CHANNELS ‘
Encoded channels
\
o Small town
Socialite I] I
= Can access contextual |] —_— (2)
relationships Hilton

e B K(Trkx EP-IT Data Science Seminar, CERN, 18 MAY 2022 26



<+— =reduces to THE LANDSCAPE OF GNNS

https://arxiv.org/pdf/1809.02942.pdf

Linearly :
Grid
Connected

™~

MLP + 1-pixel

adjacency Equivalency

~

https://citeseerx.ist.psu.edu/viewd
oc/download?doi=10.1.1.554.439
5&rep=repl&type=pdf

Cellular

Automata

/

Fully- MLP + 1-pixel
Connected Equivalency Graphical

Grid adjacency

Automata

https://arxiv.org/pdf/2012.09699.pdf

P A X TrkX EP-IT Data Science Seminar, CERN, 18 MAY 2022 27


https://arxiv.org/pdf/2012.09699.pdf
https://arxiv.org/pdf/1809.02942.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.4395&rep=rep1&type=pdf

GNNS ELSEWHERE IN PARTICLE PHYSICS

Ry: Y Rotation on the Bloch Sph

There are 11 paramet]
(shown in red boxe
1o optimize

his 4 ml

eometric '
\
aliz PyG-to-HLS
- model
mode o converter | > i
/ "\

Configurati )
N / Group labels and \"'”"m"‘""’/ cona anays

o true edges
FPGA-based Track

High Lumi Generic High Lumi CMS LArTPC Particle
Tracking Calorimetry Reconstruction

TTN Circuit 1

M Output M
Input Encoding utput Measurry

Quantum Track

Reconstruction Reconstruction

= Very large and active field of study!

= Comprehensive review of GNNs for Track Reconstruction - arXiv:2012.01249

= White paper on progress and future of the field - arXiv:2203.12852

28


https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://arxiv.org/pdf/2204.01681.pdf
https://www.osti.gov/pages/servlets/purl/1826698
https://arxiv.org/abs/2012.01249
https://arxiv.org/abs/2203.12852
https://indico.cern.ch/event/852553/contributions/4057625/
https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full

GRAPH-BASED TRACK RECONSTRUCTION

e B K(Trkx EP-IT Data Science Seminar, CERN, 18 MAY 2022 29



WHO IS INVOLVED?

= Two groups worked on the results in this presentation, and both first tested methods on TrackML,
based on the GNN-based reconstruction introduced in arxiv:2003.11603

= L 2IT: Laboratoire des deux Infinis, institute based at the University of Toulouse, within the Institute
of Nuclear Physics and Particle Physics

= Exa.Trkx: A DoE Office of Science-funded collaboration of LBNL, Caltech, FNAL, SLAC and a
collaboration of US institutions including Cincinnati, Princeton, Urbana-Champaign, Youngstown
State, and others

EP-IT Data Science Seminar, CERN, 18 MAY 2022 30



GRAPH REPRESENTATION OF AN EVENT

"= The goal of track reconstruction: -

Given set of hits in a detector from

particles, assign label(s) to each hit. ]

Perfect classification: All hits from a \
particle (and only those hits) share the

same label

= What does it mean to represent an event with a graph?

= Treat each hit as a node
= A node can have features (e.g. position, energy deposit, etc.)

= Nodes can be connected by edges, that represent the possibility of belonging to the same track

= Goal: Use ML and/or graph techniques to segment or cluster the nodes to match particle tracks

= Proof-of-concept: TrackML community challenge dataset with simplified simulation

exe B K TrkX EP-IT Data Science Seminar, CERN, 18 MAY 2022 31



PIPELINE OVERVIEW

= Current pipeline of the L2IT-Exatrkx collaborative effort

= Each stage offers multiple independent choices, depending on hardware and time constraints

' Graph Neural
Network

Metric °
Learning e f
o f % e o vk
== ]
or 4 T e —_
. @ \ o = (el ok, o)
# k k

Module ¥ 4
Map (J', vk vy
Hits Graph
Graph Edge

Construction Classification

Connected
Components

or

Connected
Components
+ Walkthrough

Edge Scores Track Candidates

Graph
Segmentation

EP-IT Data Science Seminar, CERN, 18 MAY 2022 32



DATASETS

1000

500

x direction (mm)

-500

-1000

Two datasets used to study this pipeline. For absolute clarity, when citing a result specific to one dataset, will

place the badge of TrackML or ATLAS ITk on slide:

Longitudinal Spacepoint Distribution

-3000 ~2000 -1000 0 1000 2000

z direction (mm)

y direction (mm)

1000

500

-500

-1000

Down-beampipe Spacepoint Distribution

-1000 ~500

0 500 1000
x direction (mm)

Mean number of spacepoints: 110k

Simplified simulation: No secondaries and optimistic

charge information

ATLAS ITK

LI L B L BN
ATLAS Simulation
Inclined Duals

Number of Silicon Hits

I T -] ‘
4 3 =2 -1 0 1 2 3 4

track n

Mean number of spacepoints: 310k

Full simulation

1000

Number of Tracks

33



T ———— .

ATLAS ITK GEOMETRY ® X I

Cluster Spacepoint  Silicon Track
=  Generation script* using Athena, tt at u = (200): with

statistics dominated by soft interactions Py, * B, Pixel is trivial: Each

® |Tk consists of barrel and endcap, each with pixels and strips: spacepoint maps to one
» cluster, which can map to

Ny, Pp many particles

= Ty T T T T T T T ] \ Q
E 1400 —ATLAS Simulation Preliminary — '
= " ITk Layout: 23-00-03 ]
1200 n=10 3 k )
1000F 3 _ ’
ool 1=20 1 O: Pixel barrel s AR X ® @
| — . -1503 o /
: - 1: Pixel endcap L 1508 p x P,
i 1 . —1506 a :
600 - 2:Strip barrel 1507 o P
400E _s0 - 3:Strip endca -0
- SRR | JEL SIS R N S : n=30 . P P x -0 e N
2007 TN 11 _an ] 410 ! *
‘@ : ‘! 1 |I | | l T]-4.D - 415. /., ’
0 11 | | Jo T L & 2 % P P
0 500 1000 1500 2000 2500 3000 3500 b a
z [mm]

Strip: Each spacepoint maps to two clusters - one on

= Spacepoints (3D representations of track hits) are either side of strip, which can map to many particles

defined depending on strip or pixel:

v

*Thanks Noemi Calace 34


https://gitlab.cern.ch/xju/athena/-/blob/my_dump/Tracking/TrkDumpAlgs/src/DumpObjects.cxx

T ———- .

ATLAS ITK GEOMETRY ® X o
Cluster Spacepoint  Silicon Track
A
Fiducial particles are charged, withn € [—4, 4], e
and production radius < 260mm
o . Cluster C " iCluster D
Each event has O(15k) fiducial particles, O(300k) ‘ ’
spacepoints p PSR
a X XX P
We define background spacepoints as including: ’ '
= Those left by non-fiducial or intermediate particles (i.e. any Cluster A CIL}Jster B

particle barcodes not retained during simulation), or

v

=  Those mis-constructed in the strip regions as ghost Pa E
spacepoints P'
b

An event has O(170k) background spacepoints

Ghost spacepoint: Incorrectly constructed from
clusters left by different particles

35



Hits Metric Graph

(* Learning

—~ £
e S G

Graph Construction
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EDGE TRUTH DEFINITIONS

Target particle
. Non-target particle Matching PID mp;p — Fake f —
o Lseq Non-target tp;p
tSeq
. _%o Target tp;p
Ll
<
° 7 Target Seq.
PID Truth tgeq
tpip
o
Target particle: Therefore, define efficiency and purity (note that we mask
e pr>1GeV, and out sequential non-target) for a graph with edges e
* At least 3 SP on different modules, and o __leNntgeql . lentseq— fgeq|
« Primary Efficiency = , Purity = =
|tseql le — tseql

e A (TrkX EP-IT Data Science Seminar, CERN, 18 MAY 2022 37



Hits Metric Graph

_{ Leatning &% 1{;: )
MODULE MAP - DOUBLETS Module “@ N,

Map

Graph Construction

= The idea: Build a map of detector modules, where a
connection from module A g 1400 ATLAS Simulation
to module B means that at least one true track has T oo;lncllned Duals
passed sequentially through A to B x

= Step 1: Build all combinations of sequential doublets  Modules r g n=20
for an event, register an A-to-B entry if a doublet e
passes through. O(90k) events used to build these ms
combinations ELL nado
3 l F 0.9 | I | f
= Step 2: For each A-to-B entry, also register/update m’ o kbt SR o _"u i =40
the max and min values of a set of geometric o;‘ e l'b' S TN

o 0 500 1000 1500 2000 2500 3000 3500
observables. Apply these cuts when building the

raph in inference — . . .
erap Map = {m;:m,, m,: ms, ..., mg: my}
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e
MODULE MAP - TRIPLETS "{: s }' G

: . _ Graph Construction
= The idea: Build a map of detector modules, where a connection from module A

to module B to module C means that at least one true track has passed sequentially through Ato Bto C

= Step 1: Build all combinations of sequential triplets for an event, register an A-to-B-to-C entry if a triplet passes
through

= Step 2: For each A-to-B-to-C entry, also register/update the max and min values of a set of geometric
observables. Apply these cuts when building the graph in inference

Step 1 Step 2

P —

z e
£ 1400 -ATLAS Simulation ) . =2
© . Inclined Duals W‘M‘ //’ /' ::,loped,- o ®
E =1.0 = v * = -
o n . Connections added: f:,%ﬁ:;{{&\ . An= m::- ‘lh?l o A _ Az Ay
= A Ax Ax Ax
: 4 n=20 7 i93:53 é@‘”&\‘" — pdz AZ_:: _ 2
" f 2->3->4 | %\\\ ' Ar ~ Ary,  Arys
600 : 3->4->5 \é\\\( * Zg=Zp, — T x(ﬁ)
1 4->5->6 /\\\‘§ \ c A¢M o
=>d= N . =
400 axdi A\‘k\ Ptope = 3;
\ .n‘.“.‘.‘:: : ll Il ' 1 ; 1 ! rl'l 7Ij ; : . ) A¢ - ¢h2 B ¢h1
200 ST B B Ty (o TR o owds (ERNEY G * A =Mpz —Np

Mm:.\;\:\‘:\:\:xl,{ :1 1.1'11 LB I R B e, 1
% 500 1000 1500 2000 2500 3000 3500
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L |
“Contrastive” hinge loss

METRIC LEARNING 1 = {Xm if yn =1,

max{0,A — x,}, ify,= -1,

— A=1
INTUITION = =
: : Nt‘r%ctive training
= Encode/embed inputintoN-  _— [T/t T B y=1
dimensional space

= Reward (low loss) matching
pairs within unit distance

®  Punish (high loss)
mismatching pairs within unit
distance

= Repeat for many pairs

Source Target 40




Hits Graph

Metric
Learning - %
METRIC LEARNING _{: e £
Module Jaw, .
Map ]

= The idea: Teach an MLP to embed spacepoint features (spatial and cell information) Graph Construction

= |n this embedded space, all doublets in a given particle track are trained to be x, if true pair
near each other (Euclidean distance x), using a contrastive loss function L: L= {

max(0,r — x), if false pair
= Ahitina track is trained to be closest to its preceeding and succeeding track hits

Embed into learned Connect all spacepoints All spacepoint pairs
latent space within radius r joined into graph
e \\A Pt \\\A //" \\A
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F AST G R AP H CO N STR U CTI O N Fast fixed-radius nearest neighbors: Interactive

Million-particle Fluids, Hoetzlein (NVIDIA), 2014

* Nearest neighbor search is a
bottleneck of the graph
construction stage

e FAISS finding K=500 for
N=100,000 ~ 700ms

* KNN is overkill - we don’t need
explicit list of K sorted neighbours

* Built custom library on Fixed ¢ v+ ) * P
Radius Nearest Neighbour (FRNN) » - 7. |
search algorithm '™
« u L/ -
* Cell-by-cell grid search is much S “ -" k.
faSter: [The CompleXIty Of flndlng ﬁxed_ 172974 points 543652 points 437645 points 100000 points
radius near neighbors. Bentley, et al ~tosspeetiup “Iaxspeedup “ibx;speedup “Plsspead b

1977] Accelerating NN Search on CUDA for Learning Point Clouds, Xue 2020 49


https://github.com/facebookresearch/faiss
https://github.com/lxxue/FRNN/tree/larged

Hits

Metric
Learnmg ; i
-{ = Ny 4
METRIC LEARNING - FILTERING wolbie {g{
Map ¥
= Qutput graph of metric learning is impure: 0.2% Graph Construction
= Can pass edges through a simple MLP filter to filter out the easy fakes ATLAS [Tk

= Improves purity to 2%, so graph can be trained entirely on a single GPU

Metric Leaming

Radius
/ Graph
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Filtering

Cross
Entropy
Loss
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GRAPH CONSTRUCTION RESULTS

1.15 I I 1 I I T I I I I I I LI
>., LI | L | L ‘ LI | L | T T 1T LI L > | . . |- ) |
% 104 ATLAS Simulation Preliminary _ % - ATLAS Simulation Preliminary -
E : Vs =14 TeV, ti, (u) = 200, primaries (tf and soft interactions) P, > 1 GeV : g 1.1 :— Vs =14 TeV, tf, 1) = 200, primaries (tf and soft interactions) Py > 1Gev ]
® - . o - Ini<4 -
c 1 02 — —8— Module Map ] g L —&— Module Map _
2 - #— Metric Learni i = 1.09 &~ Metric Learning ]
“5 - etric Learning _ O B .
S - = ~ B .
4@ 13_"“’0 Pt o E 1 —o . -
S - ey gognunn’ ¥ 9 F—— T &t et . ~—
@ 098—— . -.-m Pag _| % - 4
o 0.98¢ . e e . _ 2 0.95F -
) L e * - i o B |
N | "_._ ...‘.‘ _ = — —
o o B ]
o 0.96— - © 0.9 ]
G i : C - ]

_I L1 1 | L1 1 | | 111 1 ‘ 111 1 | 111 1 | 11 1 1 | 11 1 | 11 1 I_ 0_85_ L L L L L — l L L 1 1 1 L |
09473240 1 2 T3 s 1 10 107
n p. [GeV]
* Drop in efficiency at low n due to poor barrel strip * Drop in efficiency at high pr due to low
resolution (will discuss further!) training statistics
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Graph Graph Neural Edge Scores
Network o

Edge Labeling
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EDGE CLASSIFICATION WITH
GRAPH NEURAL NETWORK

Node features (spatial position) are encoded

Encoded features are concatenated and
encoded to create edge features

Edge features are aggregated around nodes
to create next round of encoded node
features (i.e. message passing)

Each iteration of message passing improves
discrimination power

.......

v¥ node features
el edge features
at iteration k

k+1

= ¢(V(I)(:V§;ecl)(2)

Battaglia, Peter, et al.
"Interaction networks for
learning about objects,
relations and physics.*
2016.

INTERACTION V3 VX
NETWORK

00
35

10°
10
10°

10744

L\ F & -
v T
10!



https://arxiv.org/abs/1612.00222

MEMORY MANAGEMENT

= Graph construction leads to very large graphs
O(1m) edges, cannot fit training on A100 GPU
with 32Gb memory

= Should not split the graphs up (leads to lower
GNN accuracy)

= Solution A: Were previously using a
compromising form of “gradient
checkpointing” - reduced memory by 4x

= Now using maximal checkpointing, reduce
memory further by 2x - just fits on A100

ot o TrkX

Graph Graph Neural
Network

Edge Scores

No checkpointing
|/-_\\ H/-_\\ AN 7

—

< <& <&

Partial checkpointing

O ..

l—h »—b — —_—

< <7 < - /

/ Y / /' Y
-l—- -l—- 1—1 d—!
\ ) e J N / o / N/
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Graph Graph Neural Edge Scores

R ﬁ' g Network ﬁ
Er A i i
E4 Ziid

TRAINING SOLUTIONS

= Solution B: Model offloading achglon 10 2 T
= Each layer of GNN placed on GPU for ot 1 Py 10
forward and backward pass, but held mlm 2m T
. gradient 1 M

on CPU otherwise ? i w ? u.,dms,.em’

Par:(a:rgeler 3212 " 2M 12 M parameter i PBFEC"")E*BF 32 i

. . momentum 32 Param update * momentum 32 1 ntum Param update float2half |

= Works well with TensorFlow, enabling O > Lz || g . -i

-

training of O(1m) edge graphs

= Unable to integrate with Pytorch ZeRO-Offload: Democratizing Billion-Scale Model Training
L Xiv: 2101.0684
plpellne arXiv: 2101.06840
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Graph Graph Neural Edge Scores

Yéti, @ B Network #%? )gﬁ)
LOSS FUNCTION DESIGN TN T

Edge Labeling

= The target of the GNN and track reconstruction is edges from
primary particles with pT>1 GeV that have left at least 3 hits on different
modules in the detector (see slide 12)

= Have very small set of target edges (1-2% of edges are true target tg,,)

= Solution: tg., ¥y = 1 weighted up by X 10, sequential background ESeq masked,
all othersy = 0

= Weighting gives much better performance at high-efficiency

= Masking gives much better performance around the 1 GeV cutoff
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GNN EDGE CLASSIFICATION RESULTS
ROC CURVE & EDGEWISE PERFORMANCE VS. p;

8 108 LI | LI | L | L | L I L I LI I LI I T 5 1 .2 [ T T T T T T LI | I ]
= , ATLAS Simulation Preliminary S - ATLAS Simulation Preliminary -
g.)_)‘ 1 0 Vs = 14 TeV, ti, (u) = 200, primaries (tf and soft interactions) P> 1 GeV g 1.1 5 :_ s = 14 TeV, tf, (u) = 200, primaries (tf and soft interactions) P> 1 GeV _:
.; 6 using Module Map o —  using Module Map N
c 10 3 () 1.1 ~e— full detector ]
S . (@)} T —-n| > 2 .
o 105 — 8 - Inl <2 ]
= ] — —
2 - 5 1.05- —
® 10* | o - ]
o0 GNN classifier = yd n N
....... Nai lassifi ] — — =

1 03 E:;: ;:::Ifl:;tion scores =0.5 —é (ZD 1 : . :':—o—++| :':'.'::: e ;
- — -2 -
102 N 0.95[~ —+- Y W
3 C —— I
10 ~ 0.9 = E
L |““|."| PRI M ul il kel /L L LY.L L TT T MR i 0.85: L | I ! [ N T |:

2 03 04 05 06 07 08 09 1 1 10 10
Signal efficiency p. [GeV]

= Edge cut of 0.5 on output of GNN edge classifier
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GNN EDGE CLASSIFICATION RESULTS
EDGEWISE PERFORMANCE VS. 7

>‘ B T T T T | T T T | L LI | L I L | T T T LI | I I | | >\ 1 -2 C T T 1 I T T 7T | T T 1 | T T T | T T 1 | T T T 1 I T T 1 1 1 T 1 ]
% 1.04— ATLAS Simulation Preliminary 1 5 - ATLAS Simulation Preliminary -
— L - o -_ —]
3(22 1.02 - Vs = 14 TeV, tl, (u) = 200, primaries (tf and soft interactions) P> 1 GeV ] o 1.1 - Vs = 14 TeV, tf, (u) = 200, primaries ({f and soft interactions) P> 1 GeV -
(O} : B using Module Map 7] -8) —  using Module Map n
> o 1 2 = E
e 1 Q ~ O e 2 o
o B S N - _ o [ o0 T o e
v - e®oq OIS o - - - ]
C 0.08F e - e 1 =Z 09= - - ]
o . :.- ...-.. - - - | Z B L 2 e 2 ]
=z B R R 5 U] N - - 7
Z 0.96] = 081 . . E
- | - ey & e’ S T .
0.94 — ] 0.7 [ o
0.92F — 0.6 =
[ caaa b b b e v v b e b v L | : ISR N S T N N T N N A AT N S R N N N NN RN SN RAT AN RN ST RN A B R :

0.9 0.5
°4 3 2 1 0 1 2 3 4 24 3 2 -4 o0 1 2 3 4
n n

= Again, see a drop in performance at low n
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Number of edges

BARREL STRIP MISCLASSIFICATION

Nature of false positive edges

180
160
140
120
100
80
60
40
20
0

x10°

- T T T T - 'E‘

- ATLAS Simulation Preliminary = £

- ] -

—_ {s=14TeV, tf, (u) = 200, primaries (tf and soft interactions) p,> 1GeV _T

E using Module Map E

- - i

- . | - ! ] I -

Qom.. ang, q
7o vony;, 5pg o > o Sleceg, Cesgi, O no
g /706‘[‘8 Po; y Clroy, aoep ' aoep . N-fiy,
Pace g Aliop M Nt Particss

I
Qet ba - al‘get

43%: “True”
ghosts

37%: Fakes

Location of false positive edges

1400 -
- ATLAS Simulation Preliminary .
1200 T s=14 TeV, tf, (u) = 200, primaries (tf and soft interactions) P> 1GeV ]
— using Module Map a
1000 _— D L R e L S R LT [ T P R L T T __
SRR i1 ¥ -
800— | i i g T FETRENE NCHEN PR ST I DY ST T : 1 i | ]
~ i 11 n
600 n l I I Do it e N A S At 2 | I i l ' ]
400 :— H ! 1 P AL . U o AR ' —:
RN R AR R TR B T T b
200‘! P 11T LTl M5 A0 D0 1]
N EERERRIN TRy =TI TR N1 R R .
— b1 I,I.|‘|||||||lillmll—l.llllllllllllllllll,l I L
I BN Ml okl e s srssarsaiak i kel A SRR
—:9000 -2000 -1000 0 1000 2000 3000
Z [mm]

—

=
=
o
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(@]
©
o

0.8 )
o
Z
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0.5

0.4
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BARREL STRIP MISCLASSIFICATION

o
@ “True” ghost edges: 43% : -
PaX Location of false positive edges
@ Edges between SP from
particle A, and a ghost = 1400~ ——— e g 1 >
;A - . =
A SP of clusters from £ = ATLAS Slmulatlon Prellmlnary E S
4,‘\_’_ . . = 1 200 — s =14 TeV, tf, {u) = 200, primaries (tf and soft interactions) P> 1GeV | 09 )]
¢ particle A and particle B. ~  Using Module Map ] L=
i P H ‘. ” 1000_ e i e T LIl L L N e T o — al-’
4 @ l.e. The GNN is “right”, - =08 &
K X . . — ; i1 .
Pa. Pb the ConStrUCUOn IS 800__ i i | g e ateratet i e vl f e P ot e : ; i i | __ %
“wrong” SEREEE IR A
600— l l i R S L L S e C I | | l ]
400:— H I 2 ALY * 5 A R opd | H —: 0.6
o L I Ry e AT T U T T
| P 1 Liin H'I'HH-——IIH‘I-H ML r L | 0.5
20007 3 0 D R IR TRI P PP Pt 1§ 4 3 RRIDRD LR B § T
E UL T
T T|. ‘l!.lllﬂ-*-.ll!llllf Y L, — 04
Fake ed geS' 37% —9000 -2000 -1000 0 1000 2000 3000 '
Z [mm]

Edges between SP from particle A and particle
B. i.e. The GNN is “wrong”
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STRIP MODULES: GHOSTS AND
Z-RESOLUTION

Since spacepoints are constructed from pairs of
clusters in the strip, could mis-construct and form a
ghost

These ghosts can be cleaned up in later stages of the
reconstruction chain

However, even for correctly matched clusters, there
remains low z-resolution

Consider this example
Easily confuses GNN!

Could fix by including underlying cluster information
somehow... (e.g. heterogeneous node features)

v

y (mm)

t (mm)

—

665r gsoc:
ssaf- =7k Cluster A
663F- r"‘ 790
se2p 785t Constructed spacepoint
estE 780t |deal spacepoint
660 X 775
659 770
658F 765 ?<
657 “ 760
656 755
I S T FETT R TETET PRRTRENT S FATTY SR TR OTY SN NN EURENN EFEIN R A A
©2d96 -395 -394 393 -392 -391 -390 -389 -388 387 -386 Noo 80 60 40 -20 0 20
X (mm) z (mm)
800 =211
o [=%
795 2.109
790F 2.108
785F 2.107
780 2.106 -
775k 2,105 Z(><
770 —e—o 2.104
765 X 5 2.103
760 2.102
755 2.101
?-lllllllllll N — I — 21lllll]]]llllllIIlllllJJIl
o83 2102 2.104 2.106 2108 211 ~{00 -80 -60 -40 -20 0 20
phi z (mm)

Image courtesy of Jan Stark - thanks!
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Edge Scores Connected Track Candidates
Components

or

Connected
Components
K, + Walkthrough

Graph Segmentation
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re Components
Q*, ﬁ or
CTION w S, ‘7’5 Connected —
TRACK CANDIDATES CONSTRU oy campondl= //?
i‘.'.,,, ;

Edge Scores Connected Track Candidates

+ Walkthrough

Graph Segmentation

=  We now have labelled edges. Want to now label each node depending on connectivity.

= Two distinct approaches: component-based segmentation, or path-based segmentation.

Component-based

E.g. connected components algorithm:

././‘

— —

H\.

Classified edges Ignore cut edges

* Pros: Fast- O(Nypges)

é/gy{acké#l

rack #2
2 2

2

Label connected
components

e Cons: Can merge tracks into one candidate

Path-based

E.g. walkthrough algorithm:

2@ "
ngf
s (A
1 2

Choose high
score junctions

rack #1
1 1

1

Classified edges, Remove a high-

scoring path

* Pros: Handles hits as a sequence, as a track should be
* Cons: Potentially slow - O (Negg4es), NEEds a directed graph
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Edge Scores Connected Track Candidates

st [T Ladk
TRACK CANDIDATES CONSTRUCTION ?i“;y. %; cf,‘r’.?,',‘fﬁii‘is}y;?ﬁu._fﬁf

+ Walkthrough

Graph Segmentation
=  We now have labelled edges. Want to now label each node depending on connectivity.

= Two distinct approaches: component-based segmentation, or path-based segmentation.

Component-based | Path-based

Both methods by construction
associate each hit with only one track
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Edge Scores Connected Track Candidates

i Components
S ﬂ? or
TRACK CANDIDATES CONSTRUCTION o, colfraeted
ﬂ:ﬁf \’ Components ';?
1‘;.,7, 7

+ Walkthrough

Graph Segmentation
= Qur specific algorithm combines the good features of each approach:

1. Connected Components 2. Walkthrough, a.k.a “Wrangler”
o—o—° o—o—© oo
3 Y
@ L, L, > 1L,
t23 ) .:r;_k:S\.
.\.\o .\.\o .?ack.#Z\.
Classified edges Cut score < 0.2 Label simple Walk through paths from Assign longest path
candidates as candidate

count length L
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TRACK MATCHING DEFINITIONS

Particle 2

= N(P;, Cj) is the number of spacepoints shared by particle i and candidate j

N(P;,C; i
= Particle i is called “matched” if, for some j, IE,(P_)’) > frruth Particle 1

H L “ ” . N(Pl’C])
= Candidate j is called “matched” if, for some i, NC) > freoco
J
= Particle i and candidate j are called “double matched” if, for some i and j,
Candidate 1

N(P;.Cj)

N(P;C;)
- >ftruth and N(Cj) >freco

N(P;)

Y.; Pi(matching condition) ur — 2 j Cj(matching condition)

eff: Zipi ’p - Z]C]

Standard matching: single-matched particles with fi,in = 0.5
Strict matching: double-matched particles with f..., = 1.0
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GNN track reconstruction efficiency

TRACK RECONSTRUCTION RESULTS

1 _2 | LI I | ‘ LI I | ‘ LI | | LI | 1T 1T | LI I LI B | LI _l

- ATLAS Simulation Preliminary .

1.15— —]

E s = 14 TeV, tf, (u) = 200, primaries (tf and soft interactions) P> 1 GeV E

1 1—_ using Module Map e

E Matching to truth particles without track fit: E

1 05 — ——4—— Standard matching —

— —k—— Strict matching ]

1 :_’__.__._—0——0——0—_’__’__¢ —— b — _:

- |

0.95F L =

A~ e o a— AZ

- —A—A— —A— __=

0.9F - T

0.85 =

0 8 : 1 1 1 | ‘ 11 1 | ‘ 1 1 1 1 | 1 1 1 | | 1 1 1 1 | | N | 11 1 1 | 11 1 1 :
—4 -3 -2 -1 0 1 2 3 4

n

Standard matching: single-matched particles with f;en = 0.5
Strict matching: double-matched particles with f,..., = 1.0

s W Trkx

EP-IT Data

a 1 _4 _I T TT | T TTT l T .I TT l T I- TT I T TTT .I T .\ T ‘ TTTT TTTT TTTT T TT I_
- ~ ATLAS Simulation Preliminary -
;g 1.3 ? Vs = 14 TeV, tf, (u) = 200, primaries (tf and soft interactions) P> 1 GeV ?
HQC-J 10 f_ using Module Map _f
-_'g : Matching to truth particles without track fit: n
(@) = ———4—— Standard matching N
E 1 . 1 T —a— Sstrict matching ]
g 5
o TWmeggpe—p—— | ]
°© T ]
S 0.9 :‘—H‘*}h —
T :
> 0.8 -
Z N ]
© o7F =
il I | 1111 | | | | 1111 | 1111 | 1111 ‘ 1111 | 1111 | 1111 | L1 1 17

O 10 20 30 40 50 60 70 80 90 100
p, [GeV]

« Fake rate is 0(1073) using standard truth

matching
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TIMING AND SCALING PERFORMANCE

3.259

3.00 1

Total time (s)
N
N
(9]

1.50 1

1:254

I

Baseline Faiss cuGraph AMP FRNN
Data Loading 0.0022 £ 0.0003 0.0021 4+ 0.0003 0.0023 £ 0.0003  0.0022 4+ 0.0003  0.0022 + 0.0003
Embedding 0.02 +0.003 0.02 + 0.003 0.02 + 0.003 0.0067 £ 0.0007  0.0067 & 0.0007
Build Edges 12 +2.64 0.54 +0.07 0.53 +£0.07 0.53 +0.07 0.04 +0.01
Filtering 0.7£0.15 0.7+£0.15 0.7+ 0.15 0.37 £0.08 0.37 £ 0.08
GNN 0.17£0.03 0.17 £ 0.03 0.17 £0.03 0.17 = 0.03 0.17+0.03
Labeling 2.2+0.3 21+0.3 0.11 +0.01 0.09 £+ 0.008 0.09 4+ 0.008
Total time 15 £ 3. 3.6 0.6 1.6 £0.3 1.2£0.2 0.7+0.1

.r."‘j
el
f/“
>
QQQ QQQ QQQ QQQ QQQ QQQ
Q Q Q Q Q Q
S A S ) 3 RS

Number of spacepoints

= Physics is important, but GNNs shine in scaling behavior

=  When development began, graph-based pipeline started required 15
sec for TrackML

=  Implemented custom Fixed Radius Nearest Neighbor (FRNN) algo.,
cuGraph Connected Components algo., and Mixed Precision inference

= Now have sub-second TrackML inference on 16Gb V100 GPU

= Inference time scales approximately linearly across size of event, in
TrackML

EP-IT Data Science Seminar, CERN, 18 MAY 2022

61



ONGOING WORK
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ONGOING WORK: HETEROGENEOUS NODE FEATURES

T 1400————— T T
IS - ATLAS Simulation Preliminary
[ 200 [ {5=14TeV, tf, {u) = 200, primaries (if and soft interactions) p,>1Gev
10002_ uuuuuuuuuuuuu
= Motivated by inconsistent performance across soof- | | | i: ——
- | i
detector: | l” sl ’ I
400:— AT DL AR
= Currently each node in graph uses same input 2"0?.'.'.'.'...*.':'.':.*..'.....m...'..'..*.;.':'.'.'.'.'.'.'
i 8000 2000 _ ~1000 0 1000 2000
feature set - spacepoints = (r, ¢, z) 2 {mm)

= We could imagine using cluster-level information, e.g. position and shape of
energy deposit

= But: this is not consistent across detector. Need different node and edge networks
depending on detector region
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ONGOING WORK: HETEROGENEOUS NODE FEATURES

= To get intuition, consider simple filter (0) . 0) MLPPP(I |] )
MLP applied to two pixel nodes: I 0

= To apply a filter MLP to a pixel (single cluster) and strip (double cluster) node
combination, need a different MLP:

1400 1

r [mm]
r [mm]

1200 0.9

1000

800 II:I
0.7

1400 ]
1200 0.9
1000
0.8
800
MLP (I |] |] ) 07
600 Q 600 Q SP
06 0.6
400 400
200 o 0.5 200 o 0.5

£000 2000 -1000 0 1000 2000 3000 O £000 2000 1000 0 1000 2000 3000

Z [mm] Z [mm]

= Already gives better than homogeneous filter MLP (~2x construction purity) 64
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ONGOING WORK: HETEROGENEOUS GRAPH NEURAL NETWORK

1400

r [mm]

1000

800
600

400k

200F

Exact same logic applies to GNN networks

Thus, is a larger model and takes longer to train

_""I"|"I""'I"‘_‘_\“"
—ATLAS Simulation Preliminary

_ ITk Layout: 23-00-03
1200 -

n=1.0

B

PRV AAVA VA

‘ .

=

=3

n

1
g
=)

n
w
=)

\I\I\I\l\\l‘lll'l\l‘llllll\'l

4.0
\

1500 2000 2500 3000 3500

z [mm]

For a four-region heterogeneous GNN, we have four node encoders/networks (Ny, N1, N,, N3) and ten edge
encoders/networks (Eyg, Eg1, Eg2, Eo3, E11, ---» E34, E44)

But reduces GNN inefficiency and fake rate by approximately half

Node Edge encoder Edge encoder
encoder 1 [1,1] [0,1]
:... -..: A..
m LR e .:o

=<
o — .. 4 ")
Node Edge encoder
encoder O [0,0]
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ONGOING WORK: ACTS & ATHENA INTEGRATION

A. Salzburger, et al.

Event Data Extrapolation Fitting Calibration,

Geometry Model |
(TrkDetDescr) OQe (TrkExtrapolation) (TrkFitter) genera (TrkAlignment)

| . Alignment

(TrkEvent) (TrkTools)

ACTS (A Common Tracking Software)

= Alibrary for tracking that is independent of particular experiment or geometry

= Written in highly performant c++ and parallelized


https://arxiv.org/abs/1910.03128
https://indico.cern.ch/event/699252/contributions/2881457

ONGOING WORK: ACTS & ATHENA INTEGRATION

A. Salzburger, et al.

Event Data Extrapolation Fitting Calibration,

Geometry Alignment

(TrkDetDescr) MOdel (TrkExtrapolation) (TrkFitter) geﬂeral (TrkAlignment)
(TrkEvent) (TrkTools)

Spacepoints in each event ExaTrkX A list of track candidates

std::vector<Spacepoints> Track Fmdmg std:.vector< std:vector<int> >

Integration of GNN pipeline with ACTS

= |ntegration complete, with generic TrackFindingMLBased interface

m  Uses TorchScript to call ML models (OnnxRuntime not yet fully compatible with GNN methods)

= Replaces seeding and track finding stages, produces protoTracks

e e nnnsen
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https://github.com/xju2/acts/tree/xju/exatrkx-plugins
https://indico.cern.ch/event/699252/contributions/2881457

ONGOING WORK: ACTS & ATHENA INTEGRATION

Athena ATLAS Primary Tracking

Sp:ace Point & !Jrift Pixel & Strip
= Framework for ATLAS event generation, Circle Formation __ Seed Finding

simulation, digitization, reconstruction
and analysis

Ambiguity TRT Extended

Track Finding Resolution Track Refit

Track Finding

ATLAS Back-Tracking

Ambiguity  TRT Extended
Resolution “ Track Refit

TRT Segment Finding in Calorimeter
Regions of Interest

Integration of GNN pipeline with Athena:

= This is ongoing!
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https://atlassoftwaredocs.web.cern.ch/athena/athena-intro/

OTHER ONGOING WORK

= Extending m inference timing and scaling studies to

= |nvestigating training and inference performance on lower p4 tracks (i.e. < 1 GeV)
and high pr tracks (i.e. > 10 GeV)

= |nvestigating performance on large radius tracks and dense track environments

= Direct comparison with combinatorial Kalman filter (current algorithm) efficiency
and track parameter resolution
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CONCLUSION

= A graph-based representation of particle collisions is intuitive and rich
= GNNs and other graph techniques are well-suited even to high luminosity events

= Produced first public results on official ATLAS ITk geometry using GNN-based track reconstruction
pipeline

= Promising reconstruction performance, well-positioned for comparison with traditional algorithms
= This is very early in development - many more improvements are in progress within Exatrkx+L2IT

= Also new techniques being invented in GNN/ML community every day

THANKS FOR TUNING IN!
Links

ExaTrkx website o L2IT website e Exalrkx paper e L2IT paper e Codebase
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https://exatrkx.github.io/
https://www.l2it.in2p3.fr/
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03047.pdf
https://hsf-reco-and-software-triggers.github.io/Tracking-ML-Exa.TrkX/

