

CLIC Post-Collision Line and Dump

Edda Gschwendtner, CERN

for the Post-Collision Team

Rob Appleby (CERN & Cockcroft Institute), Armen Apyan (CERN), Barbara Dalena (CERN), Konrad Elsener (CERN), Arnaud Ferrari (Uppsala University), Thibaut Lefevre (CERN), Cesare Maglioni (CERN), Alessio Mereghetti (CERN), Michele Modena (CERN), Mike Salt (Cockcroft Institute), Jan Uythoven (CERN), Ray Veness (CERN), Alexey Vorozhtsov (CERN)

2

Outline

- Introduction
- Absorbers and Intermediate Dump
- Magnet System
- Background Calculations to the IP
- Main Beam Dump
- Luminosity Monitoring
- 500GeV/18.6mrad Option
- Summary

Post-Collision Line

Some Numbers

50 Hz repetition rate3.7E9 e/bunch14MW beam power

156ns bunch train length**312** bunches/pulse

- e⁺e⁻ collision creates disrupted beam
 - Huge energy spread, large x,y div in outgoing beam
 → total power of ~10MW
- High power divergent beamstrahlung photons
 - 2.2 photons/incoming e+e → 2.5 E12 photons/bunch train
 → total power of ~4MW
- Coherent e+e- pairs
 - 5E8 e+e- pairs/bunchX
 - → 170kW opposite charge
- Incoherent e+e- pairs
 - 4.4E5 e+e- pairs/bunchX
 → 78 W

Design Considerations

- Transport particles of all energies and intensities from IP to dump
- Diagnostics (luminosity monitoring)
- Control beam losses in the magnets
- Minimize background in the experiments
- Stay clear of the incoming beam

Consequences

- \rightarrow Large acceptance
- \rightarrow Collimation system
- \rightarrow Main dump
- → Beam diagnostic system

5

Baseline Design

A. Ferrari, R. Appleby, M.D. Salt, V. Ziemann, PRST-AB 12, 021001 (2009)

Vertical chicane

- 1. Separation of disrupted beam, beamstrahlung photons and right-sign charge particles from coherent pairs and particles from e+e- pairs with the opposite sign charge particles
 - → Intermediate dumps and collimator systems
- 2. Back-bending region to direct the beam onto the final dump
 - \rightarrow Allowing non-colliding beam to grow to acceptable size

Baseline Design

E. Gschwendtner, CERN

CLIC meeting, 5 Nov. 2010

Baseline Design

Geometry fully implemented in SW tools

Magnet Protection Absorbers and Intermediate Dump

9

Absorber Baseline Design

10

Magnet protection:

Carbon absorbers:

Vertical apertures between 13cm and 100cm

Intermediate dump (CNGS style): iron jacket, carbon based absorber, water cooled aluminum plates, 3.15m x 1.7m x 6m

→ aperture: X=18cm, Y=86cm

 \rightarrow Solutions for absorbers exist (see dumps in neutrino experiments: 4MW)

Magnets

Post-Collision Line Magnets

Designed considerations:

IP

• average current density in copper conductor < 5 A/mm².

00 G

- magnetic flux density in magnet core is < 1.5 T.
- temperature rise of cooling water < 20° K.

\rightarrow A	All magnets	strength	of 0.8 T
-----------------	-------------	----------	----------

- \rightarrow In total 18 magnets of 5 different types
- \rightarrow Total consumption is 3.3MW

M. Modena, A. Vorozhtsov, TE-MSC

E. Gschwendtner, CERN

Dipole names	Magnetic length	Full magnet aperture horiz. / vert. [m]	Full magnet dimensions horiz. / vert. [m]	Power consumption
Mag1a1b	2m	0.22 / 0.57	1.0 / 1.48	65 kW
Mag2	4m	0.30 / 0.84	1.12 / 1.85	162.2 kW
Mag3	4m	0.37 / 1.16	1.15 / 2.26	211 kW
Mag4	4m	0.44 / 1.53	1.34 / 2.84	271 kW
MagC-type	4m	0.45 / 0.75	1.92 / 1.85	254 kW

to dump

300 Ge

E. Gschwendtner, CERN

CLIC meeting, 5 Nov. 2010

Window Frame Type Magnets Mag1a1b

10A/mm² 198kCHF 143kW

19.5cm distance to incoming beam

M. Modena, A. Vorozhtsov, TE-MSC

Vacuum System

Vacuum System

elliptical vacuum tube

- Less demanding pressure requirement in the medium vacuum range (required pressure TBC),
 - allowing for a conventional un-baked system design.
- Requires a high pumping speed due to the large surface area and beaminduced outgassing.
 - A combination of sputter-ion, turbo-molecular and mechanical pumps will be used.
- stainless steel vacuum chambers in stepped or conical forms inside the magnetic and absorber elements.
- Absorbers are outside the vacuum chambers
 - windows upstream of the intermediate dump absorbers
 - exit window separating the collider vacuum system from the main dump body
 - Large diameter (~1m).

R. Veness, TE-VSC

Background Calculations to IP

18

Background Calculations from Post-Collision Line to IP

- Entire Post-collision line geometry implemented
- Using Geant4 on the GRID
 - Neutron and photon background from absorbers and intermediate dump
 - Neutron and photon background from main beam dump
 - → Ongoing: M. Salt, Cockcroft Institute

19

E. Gschwendtner, CERN

CLIC meeting, 5 Nov. 2010

 \rightarrow Intermediate dump contributes significantly to IP background \rightarrow But 98% attenuation thanks to aperture restriction in the chicane

M. Salt, Cockcroft Institute

CLIC meeting, 5 Nov. 2010

Background Calculations to IP

→ Preliminary results show that background particles at 'outer edge' of the LCD is low. The detector yoke and calorimeter will further shield the vertex and tracker against hits from background photons.

→Even if additional absorbers are needed, space is available in the forward region between the detector (6m) and the first post-collision line magnet (27m).

Main Beam Dump

23

Main Dump

- 1966: SLAC beam dump
 - 2.2 MW average beam power capacity
 - Power absorption medium is water

- 12 MW beam power capacity
- Water dump

Baseline Main Dump Design

25

	CLIC	ILC	
Beam energy	1500 GeV	500 GeV	
# particles per bunch	3.7 x 10 ⁹	2 x 10 ¹⁰	
# bunches per train	312	2820	
Duration of bunch train	156 ns	950 μs	
Uncollided beam size at dump σ_x , σ_y	1.56 mm, 2.73 mm	2.42 mm, 0.27 mm	
# bunch trains per second	50	5	
Beam power	14 MW	18 MW	

• 2008: ILC 18 MW water dump

- Cylindrical vessel
- Volume: 18m³, Length: 10m
- Diameter of 1.8m
- Water pressure at 10bar (boils at 180C)
- Ti-window, 1mm thick, 30cm diameter

→ baseline for CLIC 2010 main dump

26

• Uncollided beam:

CLIC Main Beam Dump

 $\sigma_x = 1.56$ mm, $\sigma_v = 2.73$ mm $\rightarrow 5.6$ mm²

• Collided beam:

Particle Distribution at the Beam Dump Entrance

A. Mereghetti, EN-STI

CLIC meeting, 5 Nov. 2010

Energy Deposition in Main Dump

cLC

28

CLIC meeting, 5 Nov. 2010

E. Gschwendtner, CERN

Main Dump Issues

- Maximum energy deposition per bunch train: 270 J/cm³
 → ILC: 240 J/cm³ for a 6 cm beam sweep
- Remove heat deposited in the dump
 - Minimum water flow of 25-30 litre/s with v=1.5m/s
- Guarantee dump structural integrity
 - Almost instantaneous heat deposition generate a dynamic pressure wave inside the bath!
 - Cause overstress on dump wall and window (to be added to 10bar hydrostatic pressure).
 - \rightarrow dimensioning water tank, window, etc..
- Radiolytical/radiological effects
 - Hydrogen/oxygen recombiners, handling of ⁷Be, ³H

→ Calculations ongoing

ILC Beam Dump

30

Dump Hall - Tank - Geometry Version 2

Surround Dump Tank with 50 cm Iron + ~200 cm Borcrete (Concrete + 5% Boron).

Minimize volume of activated air. Tail Catcher inside Dump Tank.

This plan can work.

Small open area around windows for changer mechanism to be developed.

CLIC meeting, 5 Nov. 2010

E. Gschwendtner, CERN

Energy Deposition in CLIC Beam Dump Window

Titanium window:

1mm thick, 30cm diameter, cooling on internal surface by dump water at 180°C

→ Total deposited Power: ~6.3W

uncollided beam collided beam

 $max \approx 4.3 \text{ J/cm}^3$ $max \approx 0.13 \text{ J/cm}^3$

31

C. Maglioni, EN-STI

CLIC meeting, 5 Nov. 2010

ILC Beam Dump Window

Titanium window:

hemispherical shape, 1mm thick, 30mm thick, single jet cooling

 \rightarrow Maximal total power of 25 W with 21 J/cm³

 \rightarrow Maximum temperature rises to 57°C

Other Main Dump Window Issues

34

- Beam dump window needs stiffener, double/triple parallel window system, symmetric cooling, etc... to withstand
 - Hydrostatic pressure of 10bar
 - Dynamic pressure wave
 - Window deformation and stresses due to heat depositions

→ Calculations ongoing

Luminosity Monitoring

35

Luminosity Monitoring

e+e- pair production

Beamstrahlung through converter \rightarrow Produce charged particles \rightarrow Optical Transition Radiation in thin screen \rightarrow Observation with CCD or photomultiplier

 μ + μ - pair production

Main dump as converter \rightarrow muons \rightarrow install detector behind dump

- With a Cherenkov detector: 2 E5 Cherenkov photons/bunch

36

V.Ziemann – Eurotev-2008-016

First Results

A. Apyan, EN-MEF

First Results

38

E. Gschwendtner, CERN

CLIC meeting, 5 Nov. 2010

39

500 GeV c.m. Scenario

500 GeV c.m. /18.6mrad Option versus 3000 GeV c.m. / 20mrad Option

E. Gschwendtner, CERN

CLIC meeting, 5 Nov. 2010

Summary

- Many new results achieved since last year
- Conceptual design of the CLIC post-collision line exists:
 - Magnets
 - Intermediate dumps
 - Background calculations to the IP
 - Luminosity monitoring: First promising results
 - Beam dump: first results, calculations ongoing

 \rightarrow Improve design on beam dump

→Collaboration with ILC: ILC-CLIC working group on dumps?

41

• Additional Slides

Summary of Energy Deposition in Main Dum

	max [J cm-3 per bunch train]		tot [W]	
	un-collided	collided	un-collided	collided
H2O	271	9.7	13.8 M	13.1 M
Ti window	5.7	0.13	6.40	4.76
Ti vessel (side)	0.001341	0.00292	15.5 k	17.0 k
Ti vessel (upstr. face)	0.000037	0.001993	7.3	45.0
Ti vessel (dwnstr. Face)	0.254852	0.044544	1.1 k	905.0

