AEgIS collaboration

Trento Institute for Fundamental Physics and Applications

Overview of experimental approach:

Schematic overview

$$Ps^* + \overline{p} \rightarrow \overline{H} + e^-$$

<u>Technical steps</u>: cold \overline{p} ; pulsed Ps and Ps* formation; pulsed production of \overline{H} ; beam formation; deflectometer

2021: many modifications / construction sites in order to provide the technical basis for achieving the physics goals

Work on laser complex

Work on positron complex (accumulator, test set-up):

complete disassembly, refurbishment, re-assembly, commissioning and upgrades

Work on positron complex (accumulator, test set-up):

Many small improvements to e+ source → same accumulation rate as in 2017!

Ps evolves freely: a number of experiments on Ps become feasible

Work on laser complex:

expanding need for lasers, consolidation - additional laser hut, transfer line

currently houses new 243 nm laser system; space for foreseen additional laser systems

transport of UV light in vacuum to minimize losses

Work on antiproton complex:

complete refurbishment / upgrade of all internal elements

Beam entry region degrader stack

read-out PCB

segmented foil holder

holder PCB for 100 nm foil

beam entry region: degrader / BPM tests

Houses heater, temperature sensor, voltage connection. Target = 5x5 mm²

Real-time monitoring of Ps excitation lasers: array (37x28) of transparent

0.35 mm Ø fibers transparent for XUV and IR

readout by dedicated UV, IR cameras

Calibration: fibers within 0.2 mm of nominal positions, can follow shifts of lasers at 0.1 mm level

Field ionization of downstream-moving Rydberg atoms \rightarrow n-state population Dual-plane etched Cu-Be structure for planarity, stiffness, homogeneity Tested for ΔV of 5 kV

Work on control system:

Address: 24/7 x 7 month beam times with very small (local) crew;

Address: custom-built electronics, major HW modifications

replace control SW of full experiment control (was custom built LabView code)

→ ARTIQ ecosystem of open source SW + LabView +Python

replace electronics of full experiment control (DAC, controller, ns-timing, DIO)

→ Sinara family of HW

synchronized, compact, easy-to-use, automated, extendable, stable, maintainable

Antiproton run 2021:

Goals of beam time:

- beam steering
- test control system
- test degrading
- test trapping
- test entrance region modifications
- test downstream region modifications

IT MCP as beam steering diagnostic:

• beam steering

Goals of beam time:

- test control system
- test degrading
- test trapping
- test entrance region modifications
- test downstream region modifications

time-integrated 2D image of impact points of antiprotons at end of IT magnet

Automated beam scan of ELENA beam line LN02 (x, y, dx, dy)

Goals of beam time:

- beam steering
- test control system
- test degrading
- test trapping
- test entrance region modifications
- test downstream region modifications

Outcome of the 4D scan on ELENA parameters (offset H/V, angle H/V) [473 images at 15 fps]

Goals of beam time:

- beam steering
- test control system
- test degrading
- test trapping
- test entrance region modifications
- test downstream region modifications

p time-of-flight for different decelerating HV's

pafter 1500 nm Parylene N

controlled release of trapped \overline{p} a few s after trapping: annihilation rate

Summary and outlook

Covid-19 continued to have a major impact on our program in 2021, resulting in delays on several fronts, which we have attempted to mitigate

2021 prun: Many major modifications completed and tested; automated control system commissioned; recovery of pre-LS2 performance of e⁺ system demonstrated, antiproton degrading and trapping validated. Many thanks to ELENA team for excellent beam performance!

In parallel, work on Ps formation and manipulation is ongoing;

 \overline{H} formation region hardware developed and greatly improved, will be installed in the coming months, will be ready for 2022 \overline{p} run time;

Goal for 2022 \overline{p} run time: major increase of \overline{H} production through strong increase in # of trappable \overline{p} , on-axis Ps^* formation; work towards reducing Ps momentum spread in non- \overline{p} beam time with new Alexandrite laser system; prepare ion injection HW

End of slides