
AD Forum Meeting: mpp
group, CERN

Syed Anwar Ul Hasan
(Postdoc fellow: Scuola Normale Superiore di Pisa)

9th December, 2021

ONNX to TensorRT GPU model inference process

Tensorflow SavedModel File to
ONNX model conversion and
ONNX model check (Step 1)

ONNX model to TensorRT
(TRT) engine creation
(GPU-specific) (Step 2)

Computing the inference using
TRT runtime (GPU-specific
context) using TRT engine plan
file (Step 3)

Current working set-up at mpp-tatooine: TensorRT, CUDA, CUDNN installation

● Instantiating LCG CUDA 101 software stack by running the following command:

source /cvmfs/sft.cern.ch/lcg/views/LCG_101cuda/x86_64-centos7-gcc8-opt/setup.sh

● Installed versions:
○ TensorRT 7.2.3.4
○ CUDA 11.2
○ CUDNN 8.1.1.33
○ Tensorflow 2.5.0
○ Onnxruntime 1.8.0
○ Pycuda 2021.1

ONNX to TensorRT model workflow: Tensorflow SavedModel File to ONNX model
conversion (Step 1)

● Converting the VAE SavedModel (savedmodel.pb) to ONNX model using
tf2onnx library
○ With this generated ONNX model, we didn’t succeed (got errors) in creating

TRT inference engine file when running TensorRT trtexec tool in step 2.

○ 2 Errors encountered one after another:
■ RandomNormal distribution (used for epsilon calculation in Sampling layer for

reparameterization) not supported by TensorRT
■ ELU activation type not supported by TensorRT
■ Because of this 2 errors, TRT inference engine wasn’t created and thus trtexec

didn’t execute completely

ONNX to TensorRT model workflow: Tensorflow SavedModel File to ONNX model
conversion (Step 1)

● Error 1: RandomNormal distribution not supported by TensorRT (shown in the
Figure below)

ONNX to TensorRT model workflow: Tensorflow SavedModel File to ONNX model
conversion (Step 1)

● Methods to resolve Error 1: RandomNormal distribution not supported by TensorRT
○ Employed a different RandomNormal function (tf.random.normal) instead of keras

function but couldn’t succeed

○ Writing a custom plugin in TensorRT for this function may require dependencies with
underlying TensorRT cpp libraries. Didn’t get much into the details

○ Found out RandomUniform distribution is supported, so chose epsilon following a
random uniform instead of random normal distribution. Need to check further on how
VAE behaves with this change.

ONNX to TensorRT model workflow: Tensorflow SavedModel File to ONNX model
conversion (Step 1)

● Error 2: ELU activation type not supported by TensorRT (shown in the Figure
below)

ONNX to TensorRT model workflow: Tensorflow SavedModel File to ONNX model
conversion (Step 1)

● Method to resolve the Error 2: ELU activation type not supported by TensorRT
○ Instead of ELU, I chose ReLU activation type for the VAE model during training

● With RandomUniform distribution for epsilon and ReLU activation type, the
generated ONNX model file is compatible with TensorRT trtexec tool and the
TRT engine file (plan) is created.

● We generated separate TRT engine plans for Tesla V100 and Tesla T4 GPU,
and also created separate TRT context for each of them for the inference run.

ONNX to TensorRT model workflow: ONNX model to TensorRT (TRT) TRTExec
tool for TRT engine creation (Step 2)

● Using TensorRT in-built trtexec tool, we create a TensorRT engine file from the
ONNX model (the text file log of operations trtexec generates is very big - tens of
pages)

● Since TensorRT and also trtexec works with CUDA, CUDDN, Pycuda working
set-up of each one of them is required to generate the TRT engine file.

● Run: TRT_EXEC --onnx=onnx_model_name --output=trt_engine.trt

ONNX to TensorRT model workflow: ONNX model to TensorRT (TRT) TRTExec
tool for TRT engine creation (Step 2)

● TRTexec is successful (shows the PASSED message at the end of the run) and
generates TRT engine file for the VAE onnx model.

ONNX to TensorRT model workflow: Computing the inference with TRT runtime
with TRT engine file as input (Step 3)

● Currently, I am getting CUDDN mapping error when I run the TRT engine file with the
TensorRT runtime

● TRT model is getting created from the engine file but error in the inference runtime phase
before computing the predictions.

● I solved this Pycuda error by using push and pop methods and deleting the context after
inference run

ONNX to TensorRT model workflow: RESULTS after computing the inference with
TRT runtime using TRT engine (plans)

● GPU: TESLA V100 (specific TRT engine plan and context), Precision: FP32

ONNX to TensorRT model workflow: RESULTS after computing the inference with
TRT runtime using TRT engine (plans)

● GPU: TESLA T4 (specific TRT engine plan and context), Precision: FP32

ONNX to TensorRT model workflow: RESULTS after computing the inference with
TRT runtime using TRT engine (plans)

● TESLA V100

ONNX to TensorRT model workflow: RESULTS after computing the inference with
TRT runtime using TRT engine (plans)

● TESLA T4

TF-TensorRT model inference (native TF) with GPUs

TF-TensorRT model inference: Results

● The trend is the inference time stays relatively flat for different batch sizes

