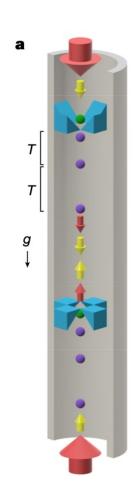
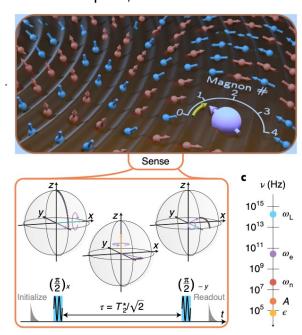


Participant > 130

Quantum technology is the cutting edge and frontier


Recent development of Quantum computer

Very fast!!


1K Qubit machine available soon

(IBM)

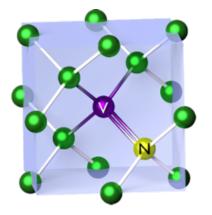
Quantum sensing opens new experiments

For example,

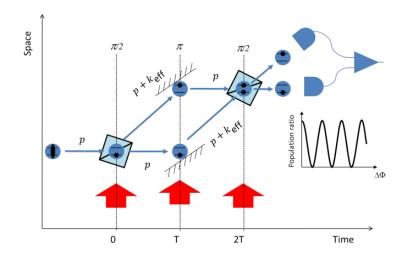
Nature

High precise gravity meter with atomic vapor

Detect magnon


TABLE I. Experimental implementations of quantum sensors.

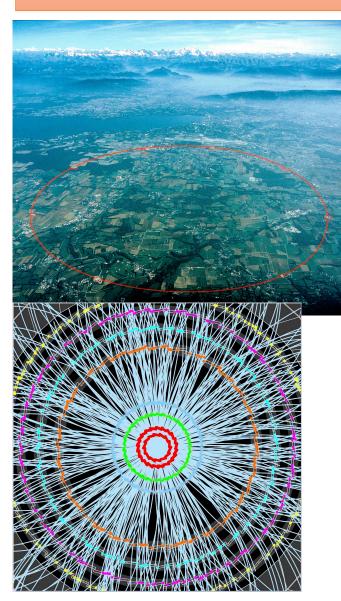
Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency	Initalization	Readout	Type
Neutral atoms						
Atomic vapor	Atomic spin	Magnetic field, rotation, time/frequency	dc-GHz	Optical	Optical	II, III
Cold clouds	Atomic spin	Magnetic field, acceleration, time/frequency	dc-GHz	Optical	Optical	II, III
Trapped ion(s)						
	Long-lived	Time/frequency	THz	Optical	Optical	II, III
	electronic state	Rotation		Optical	Optical	II
	Vibrational mode	Electric field, force	MHz	Optical	Optical	II
Rydberg atoms						
	Rydberg states	Electric field	dc, GHz	Optical	Optical	П, П
Solid-state spins (enser	nbles)					
NMR sensors	Nuclear spins	Magnetic field	dc	Thermal	Pick-up coil	II
NV ^b center ensembles	Electron spins	Magnetic field, electric field, temperature,	dc-GHz	Optical	Optical	П
		pressure, rotation				
Solid-state spins (single	•					
P donor in Si	Electron spin	Magnetic field	dc-GHz	Thermal	Electrical	II
Semiconductor quantum dots	Electron spin	Magnetic field, electric field	dc-GHz	Electrical, optical	Electrical, optical	I, II
Single NV ^b center	Electron spin	Magnetic field, electric field, temperature, pressure, rotation	dc-GHz	Optical	Optical	П
Superconducting circui	ts					
SQUID ^c	Supercurrent	Magnetic field	dc-GHz	Thermal	Electrical	I, II
Flux qubit	Circulating currents	Magnetic field	dc-GHz	Thermal	Electrical	II
Charge qubit	Charge eigenstates	Electric field	dc-GHz	Thermal	Electrical	II
Elementary particles						
Muon	Muonic spin	Magnetic field	dc	Radioactive decay	Radioactive decay	II
Neutron	Nuclear spin	Magnetic field, phonon density, gravity	de	Bragg scattering	Bragg scattering	П
Other sensors						
SET ^d	Charge eigenstates	Electric field	dc-MHz	Thermal	Electrical	I
Optomechanics	Phonons	Force, acceleration, mass, magnetic	kHz-GHz	Thermal	Optical	I
Interferometer	Photons, (atoms, molecules)	field, voltage Displacement, refractive index				п, п


^aSensor type refers to the three definitions of quantum sensing in Sec. II.A.

Rev. Mod Phys 89 035002 (2017)

Many types of Quantum sensor

NV center widely used for magnetic,



Interferometer may be used for gravity, berry phase

^bNV: nitrogen vacancy.

cSQUID: superconducting quantum interference device. dSET: single electron transistor.

For Particle Physics

CERN Quantum Technology Initiative

New CERN activity in place

Communication channels (web site) being set up

Most Scientific Advisory Board members have been nominated

Invitation letters being prepared

Collaborations being established in the Member States, US (Fermilab, Oak Ridge) and Japan (Tokyo – ICEPP)

Signed Quantum Hub Agreement with IBM Working on roadmap white paper

A workshop on Quantum Technologies for HEP being organised tentatively in June

- Kick-off of the Advisory Board
- Presentation of the draft Roadmap
- First projects, activities, results

Affiliation of Advisory Board Members

Austria: Vienna University of Technology Belgium: Université Libre de Bruxelles Bulgaria: Sofia University Czech Republic: Palacký University Denmark: Aahrus University Finland: University of Helsinki France: CEA, CNRS Germany: DESY Greece: University of Ioannina Hungary: Wigner Research Centre Israel: Israel National Quantum Initiative Italy: INFN Netherlands: QuSoft Norway: under discussion Poland: National Centre for Nuclear Research Portugal: IST Lisbon Romania: under discussion Serbia: University of Belgrade Slovakia: Slovak Academy of Science Spain: Universidad de Oviedo Sweden: Chalmers University Switzerland: ETHZ

26.04.2 United Kingdom: Quantum Concina Huh

interesting topics of our center

- Quantum AI (both software/hardware)
- Quantum sensors for DM/QG
- QC Application for FT, Tracking...

LHC produces the complicated data / big data size (500PB)

Open for the inter. Joint Research

J. Mnich

Purpose of this workshop

With recent progress in quantum science and technologies,

foster new ideas to advance or develop new fields in research for high-energy physics, nuclear physics, astrophysics and condensed matter physics, empowered by quantum information technologies.

- Quantum-sensor applications for physics
- Quantum-computer applications for physics
- Developments of quantum computer and sensor technologies
- Theoretical development in fundamental physics with quantum information

If you obtain new idea/hint, this workshop is fruitful

workshop timetable: world-wide workshop

9th

➤ US-Friendly time (8:30-11:10 JST)

Quantum sensor/computer developments and physics applications: 1¶ Quantum sensor/computer developments and physics applications: 2¶

➤ Europe-Friendly time (16:00-19:00 JST)

Quantum computer/sensor developments and physics applications: 1¶ Quantum computer/sensor developments and physics applications: 2¶

➤ US-Friendly time (8:00-11:00 JST)

Quantum computer/sensor applications for physics: 1 Quantum computer/sensor applications for physics: 2 1

> Europe-Friendly time (16:00-19:10 JST)

Quantum computer applications for physics: 3¶ Quantum-computer applications for physics: 4¶