

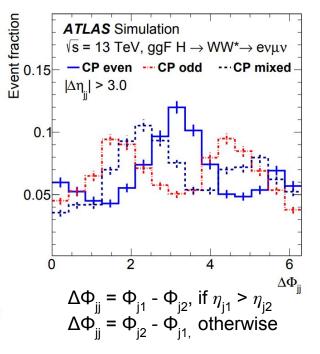
CP violations in Higgs interactions: experimental summary

Hualin Mei

University of California, Santa Barbara On behalf of the ATLAS and CMS collaboration

Introduction

- The SM Higgs has J^{PC}=0++
- Small deviation from a pure CP-even interaction of the H with any of the SM particles would be a direct indication of BSM physics
- With Run 2 data, the CP properties of several Higgs couplings have been studied experimentally using production and/or decay information
- This talk summarizes recent CP studies of the Hgg, HVV, Htt, and H $\tau\tau$ couplings by the ATLAS and CMS collaborations

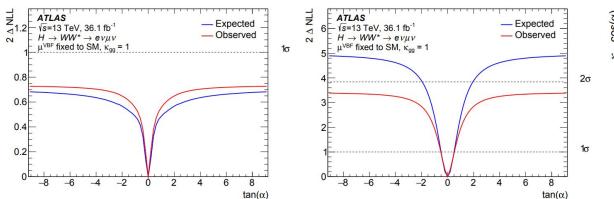

ATLAS HVV via $H \rightarrow WW \rightarrow ev\mu v$ (overview)

- Probe CP mixing in effective Hgg interaction using ggF+2-jet events
- Assume HVV SM like
- Parameterization in terms of CP mixing angle α and κ

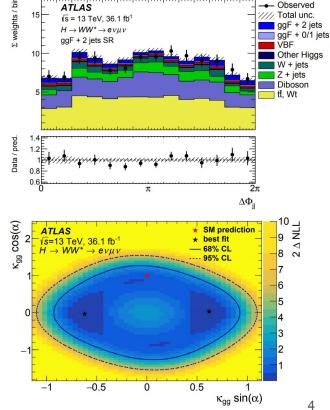
• CP-even:
$$\kappa_{gg} = 1$$
, $\cos(a) = 1$
• CP-old: $\kappa_{gg} = 1$, $\cos(a) = 0$

$$\mathcal{L}_{0}^{\text{loop}} = -\frac{g_{Hgg}}{4} \left(\kappa_{gg} \cos(\alpha) G^{a}_{\mu\nu} G^{a,\mu\nu} + \kappa_{gg} \sin(\alpha) G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) H$$

• Signed- $\Delta \Phi_{jj}$ sensitive to CP


j1 and j2 are leading and subleading jet in pT

3


arXiv:2109.13808

ATLAS HVV via $H \rightarrow WW \rightarrow ev\mu v$ (result)

- Signal regions: 3 BDT \times 4| $\Delta \eta_{ii}$ | regions
- 2 likelihood fits on $\Delta \Phi_{ii}$
 - Shape only (float BSM) Ο
 - Shape + rate constrained to BSM scenario Ο

arXiv:2109.13808

CMS HVV via H→ZZ→4I (setup)

PhysRevD.104.052004

Generic HVV (V=W,Z,g,γ) scattering amplitude:

$$\begin{aligned} \mathscr{A}(\mathrm{HVV}) \sim \left[a_{1}^{\mathrm{VV}} + \frac{\kappa_{1}^{\mathrm{VV}} q_{1}^{2} + \kappa_{2}^{\mathrm{VV}} q_{2}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}} \right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} + a_{2}^{\mathrm{VV}} r^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\mathrm{VV}} f^{*(1)} \tilde{f}^{*(2)\mu\nu} \\ \\ \frac{\mathrm{SM-like \ CP \ even}}{\mathrm{V} = \mathrm{W/Z}} & \mathrm{Anomalous \ CP-even} & \mathrm{CP-odd} \\ \mathbf{V} = \mathrm{W/Z} & \mathrm{a1} & \mathrm{a2}, \, \kappa_{1}, \, \kappa_{2}^{\mathrm{ZV}} & \mathrm{a3} \\ \\ \mathrm{V} = \mathrm{g} & \mathrm{a2} & \mathrm{a3} \end{aligned}$$

Two approaches to deal with HZZ/HWW coupling:

1.
$$a^{WW} = a^{ZZ}$$
 2. SU(2) X U(1) - SMEFT

CMS HVV via H→ZZ→4I (setup)

PhysRevD.104.052004

Generic HVV (V=W,Z,g,γ) scattering amplitude:

Parametrize using fractions (V = W/Z)

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \operatorname{sgn}\left(\frac{a_i}{a_1}\right)$$

CMS HVV via H→ZZ→4I (setup)

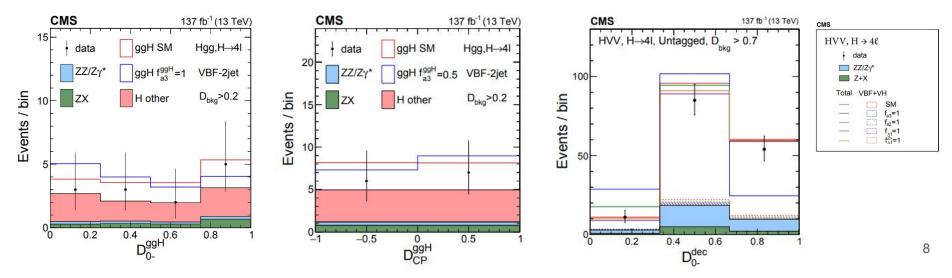
PhysRevD.104.052004

Generic HVV (V=W,Z,g,γ) scattering amplitude:

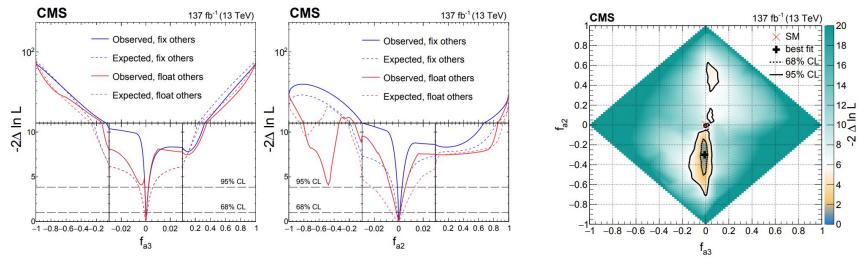
$$\mathcal{A}(\text{HVV}) \sim \begin{bmatrix} a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{(\Lambda_1^{\text{VV}})^2} \end{bmatrix} m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + \begin{bmatrix} a_2^{\text{VV}} \\ a_2^{\text{VV}} \end{bmatrix} f^{*(1)} f^{*(2)\mu\nu} + \begin{bmatrix} a_3^{\text{VV}} \\ a_3^{\text{VV}} \end{bmatrix} f^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

$$\begin{bmatrix} \text{SM-like CP even} & \text{Anomalous CP-even} \\ \text{Anomalous CP-even} & \text{CP-odd} \end{bmatrix}$$

$$V = W/Z \qquad \text{a1} \qquad \text{a2}, \kappa_1, \kappa_2^{\text{ZV}} \qquad \text{a3}$$


$$V = g \qquad \text{a2} \qquad \text{a3}$$

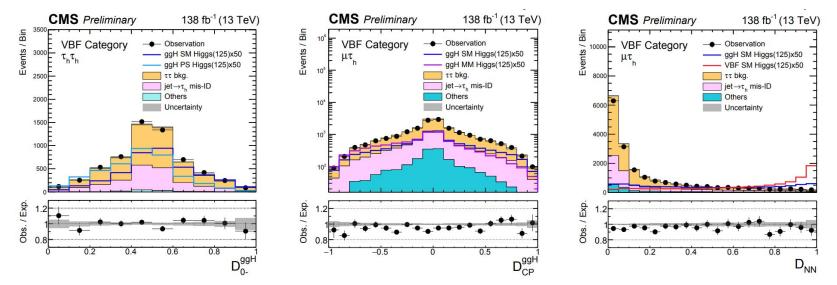
Parametrize using fractions (V = g)


$$f_{a3}^{\text{ggH}} = \frac{|a_3^{\text{gg}}|^2}{|a_2^{\text{gg}}|^2 + |a_3^{\text{gg}}|^2} \operatorname{sgn}\left(\frac{a_3^{\text{gg}}}{a_2^{\text{gg}}}\right)$$

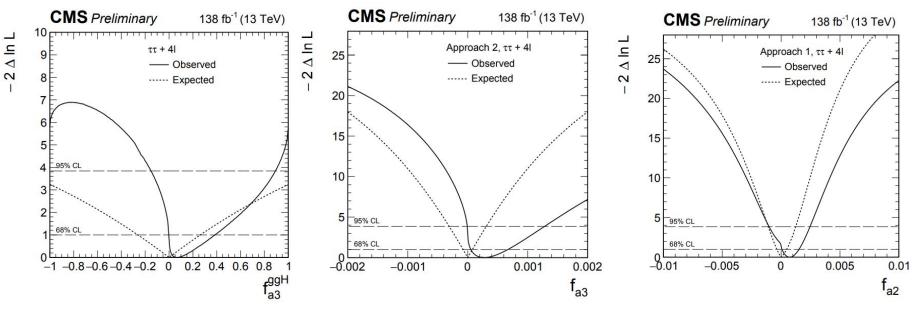
CMS HVV via $H \rightarrow ZZ \rightarrow 4I$ (analysis strategy)

- Consider all major Higgs production modes (ggF, VBF, VH, ttH, tH)
- Event categorization based on MELA variables to exploit production and decay information
- Perform multi-dimensional fit to extract parameters sensitive to CP

CMS HVV via $H \rightarrow ZZ \rightarrow 4I$ (selective results)



- (Right) 1D scans of f_{ai} parameters using approach 1 ($a^{WW} = a^{ZZ}$)
- (Left) 2D scan of f_{a2} and f_{a3} parameters using approach 2 (SMEFT)
- Minima consistent with the SM
- Corresponding EFT coefficients are also measured (more in paper)

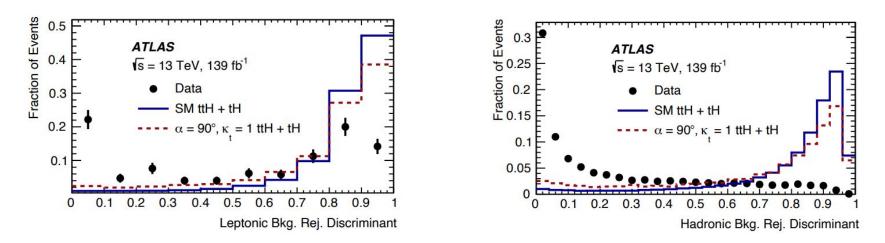

CMS HVV via H→ττ (overview)

- Use 4 TT decay channels: $T_h T_h$, μT_h , $e T_h$, $e \mu$
- Explore ggH, VBF and VH production information
- 3 analysis categories: 0-jet, boosted, VBF (most sensitive to CP)
- MELA variables + neural network is used for VBF category

CMS HVV via $H \rightarrow \tau \tau + H \rightarrow ZZ$ (selective results)

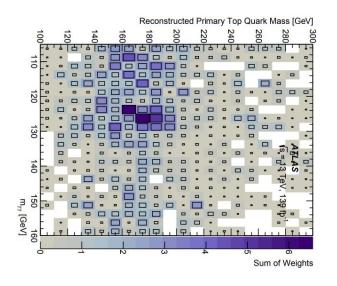
- Stringent constraints on CP odd and other anomalous couplings
- $H \rightarrow \tau \tau$ contributes most significantly for small f_{ai} and f_{a3}^{ggH}

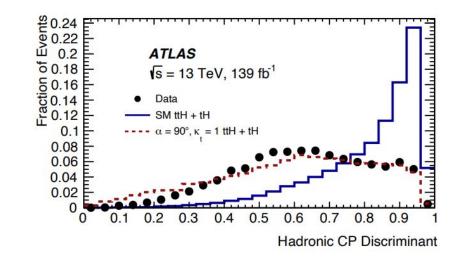
ATLAS Htt via ttH/tH, $H \rightarrow \gamma \gamma$ (overview)


- CP mixing in the Htt Yukawa coupling can be probed directly in ttH/tH production mode
- The Lagrangian for t-H interaction including CP mixing is

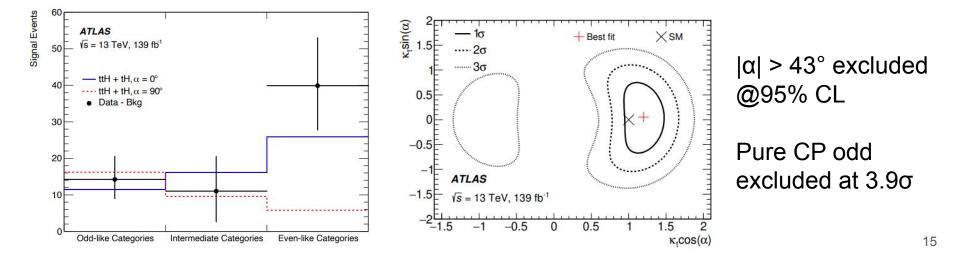
$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$

- SM corresponds to $\alpha = 0$, $\kappa_t = 1$, full CP odd is $\alpha = 90^{\circ}$
- CP-odd component in t-H coupling affects cross sections + kinematics of ttH/tH


ATLAS Htt via ttH, $H \rightarrow \gamma \gamma$ (strategy)


- Hadronic (≥3 jets, ≥1 b-jet, 0 lep) and leptonic (≥1 b-jet, ≥1 lep) category
- Two BDTs in each category:
 - Background BDT: reject SM background
 - Input features: 4-vec. of γ, j, I and MET
 - Weak dependence on CP mixing angle

ATLAS Htt via ttH, $H \rightarrow \gamma \gamma$ (strategy)


- CP BDT: separate CP even and CP odd ttH/tH, using
 - \circ pT/ η of diphoton, HT, njets, nbjets, 1st and 2d min $\Delta R(\gamma, j)$
 - pT/η/φ/top reco. BDT score of 1st and 2nd reco. top, Δη(t1, t2), Δφ (t1, t2), mtt, mt1H

ATLAS Htt via ttH, $H \rightarrow \gamma \gamma$ (result)

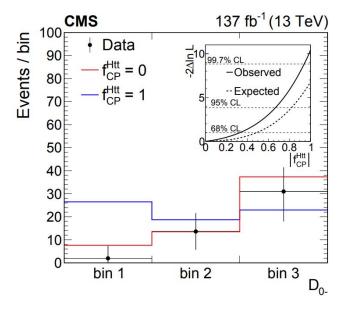
- Define signal regions (SRs) based on 2 BDT scores
- Parametrize signal yields in SRs based on mixing angle α and Htt strength κ_t
- Fit the mγγ spectrum in all categories simultaneously to extract signal

CMS Htt via ttH, $H \rightarrow \gamma \gamma$ (overview)

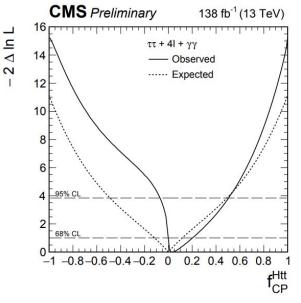
• Parametrization of CP structure of the Htt amplitude:

$$\mathcal{A}(\mathrm{Htt}) = -\frac{m_{\mathrm{t}}}{v}\overline{\psi}_{\mathrm{t}}\left(\kappa_{\mathrm{t}} + \mathrm{i}\tilde{\kappa}_{\mathrm{t}}\gamma_{5}\right)\psi_{\mathrm{t}}$$

- κ_{t} and κ_{t}^{2} are the CP-even and CP-odd Yukawa couplings
- Measure the CP structure with


$$f_{\rm CP}^{\rm Htt} = \frac{|\tilde{\kappa}_{\rm t}|^2}{|\kappa_{\rm t}|^2 + |\tilde{\kappa}_{\rm t}|^2} \operatorname{sign}(\tilde{\kappa}_{\rm t}/\kappa_{\rm t})$$

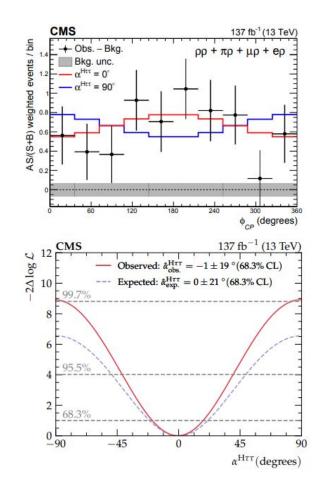
- Overall analysis strategy:
 - Two analysis categories: Leptonic and Hadronic
 - Two BDTs for each category: BDT-bkg to reject SM bkg, and a CP BDT to separate CP-even from CP-odd


Phys.Rev.Lett.125.061801

CMS-PAS-HIG-20-007

CMS Htt via $H \rightarrow \tau \tau + H \rightarrow ZZ + H \rightarrow \gamma \gamma$ (result)

- ttH, $H \rightarrow \gamma \gamma$ only
- CP-odd is excluded at 3.2 σ
- |f^{Htt}_{CP}| < 0.67 at 95%



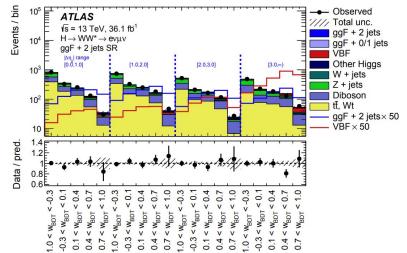
- Assuming the ggH loop is dominated by the top quark
- Measure f^{Htt}_{CP} combining ggH, ttH, and tH

arXiv:2110.04836

CMS HTT via $H \rightarrow \tau \tau$

- First measurement of the effective mixing angle α^{H^π} between CP-even and CP-odd coupling
- CP-even: |αττ |=0 , CP-odd: |α |=90 , CP-mix: 0<|αττ |<90
- Reconstruct the angle φ_{CP} between the τ decay planes for the various τ decay modes
- CP-odd is excluded at 3.0σ

Summary


- Presented the latest measurements of Higgs CP properties by the ATLAS and CMS Collaborations
- All measurements are consistent with the SM
- First studies of Higgs-fermion couplings using Run 2 data
- Stringent limits set of CP-properties of Higgs couplings:
 - HVV, Hgg, Htt, and H $\tau\tau$
- More experimental results are in the pipelines, stay tuned!

Backup

ATLAS HVV via $H \rightarrow WW \rightarrow ev\mu v$

Table 3: Event selection criteria used to define the signal regions for the ggF + 2 jets and VBF event categories.

- 	ggF + 2 jets	VBF	
	Two isolated, different-flavour leptons ($\ell = e, \mu$) with opposite charge		
Preselection	$p_{\rm T}^{\rm lead}$ > 22 GeV, $p_{\rm T}^{\rm sublead}$ > 15 GeV		
rieselection	$m_{\ell\ell} > 10 \text{ GeV}$		
	$N_{\rm jet} \ge 2$		
Background rejection	$N_{b\text{-jet}, p_{\mathrm{T}} > 20 \text{ GeV}} = 0$		
	$m_{ au au} < 66 \text{ GeV}$		
	$\Delta R_{jj} > 1.0$		
	$p_{\mathrm{T},\ell\ell} > 20 \mathrm{~GeV}$	central jet veto	
	$m_{\ell\ell} < 90 \text{ GeV}$	outside lepton veto	
	$m_{\rm T} < 150 { m ~GeV}$		
BDT input variables	$m_{\ell\ell}, m_{\mathrm{T}}, p_{\mathrm{T},\ell\ell}, \Delta\phi_{\ell\ell}$	$m_{jj}, \Delta y_{jj}, m_{\ell\ell}, m_{\mathrm{T}}, \Delta \phi_{\ell\ell}$	
BD1 input variables	$\min \Delta R(\ell_1, j_i), \min \Delta R(\ell_2, j_i)$	$\sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell,j}, p_{\mathrm{T}}^{\mathrm{tot}}$	

CMS HVV/Hff via $H \rightarrow ZZ \rightarrow 4I$

$$\begin{split} \mathcal{D}_{\text{alt}}\left(\boldsymbol{\Omega}\right) &= \frac{\mathcal{P}_{\text{sig}}\left(\boldsymbol{\Omega}\right)}{\mathcal{P}_{\text{sig}}\left(\boldsymbol{\Omega}\right) + \mathcal{P}_{\text{alt}}\left(\boldsymbol{\Omega}\right)'}\\ \mathcal{D}_{\text{int}}\left(\boldsymbol{\Omega}\right) &= \frac{\mathcal{P}_{\text{int}}\left(\boldsymbol{\Omega}\right)}{2\sqrt{\mathcal{P}_{\text{sig}}\left(\boldsymbol{\Omega}\right) \ \mathcal{P}_{\text{alt}}\left(\boldsymbol{\Omega}\right)}}, \end{split}$$

D_{alt}: separate two models, e.g. ggH vs VBF, SM vs BSM D_{int}: deals with interference between two models

Category	Selection	Observables \vec{x} for fitting
Scheme 1 VBF-1jet VBF-2jet VH-hadronic	$egin{aligned} \mathcal{D}_{1 m jet}^{ m VBF} &> 0.7 \ \mathcal{D}_{2 m jet}^{ m VBF} &> 0.5 \ \mathcal{D}_{2 m jet}^{ m VH} &> 0.5 \end{aligned}$	$egin{aligned} \mathcal{D}_{ ext{bkg}} \ \mathcal{D}_{ ext{bkg}}, \mathcal{D}_{ ext{2jet}}^{ ext{VBF}}, \mathcal{D}_{0-}^{ ext{ggH}}, \mathcal{D}_{CP}^{ ext{ggH}} \ \mathcal{D}_{ ext{bkg}} \end{aligned}$
VH-leptonic tīH-hadronic tīH-leptonic Untagged Scheme 2	see Section 3 see Section 3 see Section 3 none of the above	$egin{aligned} \mathcal{D}_{\mathrm{bkg}} & \mathcal{D}_{0-}^{\mathrm{t\bar{t}H}} \ \mathcal{D}_{\mathrm{bkg}} & \mathcal{D}_{0-}^{\mathrm{t\bar{t}H}} \ \mathcal{D}_{\mathrm{bkg}} & \mathcal{D}_{0-}^{\mathrm{t\bar{t}H}} \ \mathcal{D}_{\mathrm{bkg}} \end{aligned}$
Boosted VBF-1jet VBF-2jet VH-hadronic VH-leptonic Untagged	$\begin{array}{l} p_{T}^{4\ell} > 120 \text{GeV} \\ \mathcal{D}_{ljet}^{VBF} > 0.7 \\ \mathcal{D}_{2jet}^{VBF} > 0.5 \\ \mathcal{D}_{2jet}^{VH} > 0.5 \\ \text{see Section 3} \\ \text{none of the above} \end{array}$	$ \begin{array}{l} \mathcal{D}_{\rm bkg}, p_{\rm T}^{4\ell} \\ \mathcal{D}_{\rm bkg}, p_{\rm T}^{4\ell} \\ \mathcal{D}_{\rm bkg}, \mathcal{D}_{\rm 0h+}^{\rm VBF+dec}, \mathcal{D}_{\rm 0-}^{\rm VBF+dec}, \mathcal{D}_{\rm A1}^{\rm VBF+dec}, \mathcal{D}_{\rm A1}^{\rm VPF+dec}, \mathcal{D}_{\rm CP}^{\rm VBF}, \mathcal{D}_{\rm CP}^{\rm VBF} \\ \mathcal{D}_{\rm bkg}^{\rm EW}, \mathcal{D}_{\rm 0h+}^{\rm VH+dec}, \mathcal{D}_{\rm 0-}^{\rm VH+dec}, \mathcal{D}_{\rm A1}^{\rm VH+dec}, \mathcal{D}_{\rm A1}^{\rm Z\gamma, \rm VB+dec}, \mathcal{D}_{\rm OH}^{\rm VH}, \mathcal{D}_{\rm CP}^{\rm VH} \\ \mathcal{D}_{\rm bkg}, \mathcal{P}_{\rm ft}^{4\ell} \\ \mathcal{D}_{\rm bkg}, \mathcal{D}_{\rm 0h+}^{\rm dec}, \mathcal{D}_{\rm 0-}^{\rm dec}, \mathcal{D}_{\rm A1}^{\rm Z\gamma, \rm dec}, \mathcal{D}_{\rm dec}^{\rm dec}, \mathcal{D}_{\rm CP}^{\rm dec} \end{array} $

Observables in HVV

	D _{alt}			$D_{ m int}$		
	$D_{ m bkg}$	Signal vs qqZ	Z bkg			inv
	a ₃	a ₂	K1	K ₂ Zγ	a ₃	a ₂
Decay	$D_{0-}^{ m dec}$	$D_{0\mathrm{h+}}^{\mathrm{dec}}$	$D_{\Lambda 1}^{ m dec}$	$D^{Z\gamma, ext{dec}}_{\Lambda 1}$	$D_{ m CP}^{ m dec}$	$D_{ m int}^{ m dec}$
VBF	$D_{0-}^{\text{VBF+dec}}$	$D_{0\mathrm{h+}}^{\mathrm{VBF+dec}}$	$D_{\Lambda 1}^{ m VBF+dec}$	$D_{\Lambda 1}^{\mathrm{Z}\gamma,\mathrm{VBF+dec}}$	$D_{\mathrm{CP}}^{\mathrm{VBF}}$	$D_{ m int}^{ m VBF}$
VH	$D_{0-}^{\rm VH+dec}$	$D_{0\mathrm{h+}}^{\mathrm{VH+dec}}$	$D_{\Lambda 1}^{ m VH+dec}$	$D_{\Lambda 1}^{ m Z\gamma,VH+dec}$	$D_{\rm CP}^{ m VH}$	$D_{ m int}^{ m VH}$

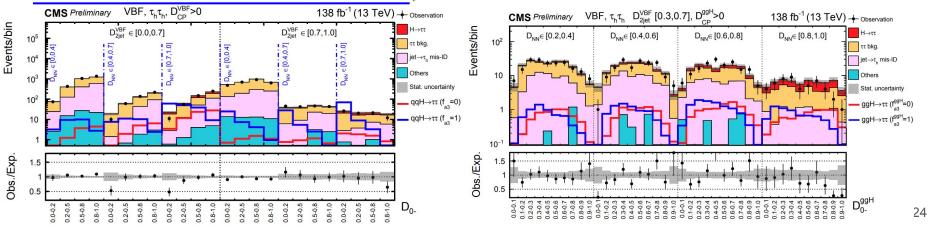
Observables in Hff

$D_{\rm alt}$		$D_{\rm int}$
$D_{ m bkg}$	D_{2jet}^{VBF} To separate ggH and VBF events a ₂ and a ₃ separation depends on D _{2jet}	
D_{0-}^{ttH}	D_{0-}^{ggH}	$D_{ m CP}^{ m ggH}$

CMS HVV via $H \rightarrow \tau \tau$

Table 4: List of observables used in the MELA method.

Category	Observable	Goal	$\mathcal{D}_{2 ext{jet}}^{ ext{VBF}} = rac{\mathcal{P}_{ ext{SM}}^{ ext{ggn}} + \mathcal{P}_{0-}^{ ext{ggn}}}{\mathcal{P}_{ ext{SM}}^{ ext{ggn}} + \mathcal{P}_{0-}^{ ext{ggn}} + \mathcal{P}_{ ext{SM}}^{ ext{VBF}}}$
0-jet	$m_{ au au}$	Separate H signal from backgrounds	$\mathcal{P}_{\rm SM}^{\rm sbir} + \mathcal{P}_{0-}^{\rm sbir} + \mathcal{P}_{\rm SM}^{\rm vBr}$
Boosted	$p_{\rm T}^{\tau\tau}$, $m_{\tau\tau}$	Separate H signal from backgrounds	oggH
VBF	$\mathcal{D}_{ m NN}$	Separate VBF-like H signal from backgrounds	$\mathcal{D}^{\mathrm{ggH}}_{\mathrm{0-}} = rac{\mathcal{P}^{\mathrm{ggH}}_{\mathrm{SM}}}{\mathcal{P}^{\mathrm{ggH}}_{\mathrm{SM}} + \mathcal{P}^{\mathrm{ggH}}_{\mathrm{0-}}}$
VBF	$\mathcal{D}_{2 ext{jet}}^{ ext{VBF}}$	Separate ggH from VBF H production	$\mathcal{P}_{\rm SM}^{\rm sgm} + \mathcal{P}_{0-}^{\rm sgm}$
VBF	$\mathcal{D}_{0-}^{\mathrm{ggH}}\left(\mathcal{D}_{0-} ight)$	Separate BSM from SM ggH (HVV)	\mathcal{P}^{ggH}_{even}
VBF	$\mathcal{D}_{\mathrm{CP}}^{\mathrm{ggH}}\left(\mathcal{D}_{\mathrm{CP}}^{\mathrm{VBF}} ight)$	Sensitive to the interference between the <i>CP</i> -even and <i>CP</i> -odd	$\mathcal{D}_{CP}^{ggH} = \frac{\mathcal{P}_{SM-0-}^{ggH}}{\mathcal{P}_{SM}^{ggH} + \mathcal{P}_{0-}^{ggH}}$
		contributions to the Hgg (HVV) coupling	$r_{\rm SM} \pm r_{0-}$


- ggH

- ggH

CMS HVV via $H \rightarrow \tau \tau$

The simplest neural network is employed in the $e\tau_h$ and $\mu\tau_h$ channels where the background is dominated by the $Z \rightarrow \tau\tau$ production. Thus, a simple binary classifier is trained to distinguish VBF production from the $Z \rightarrow \tau\tau$ process. We use all seven MELA input variables, $m_{\tau\tau}$, m_{jj} , and $p_{\tau}^{\tau\tau}$ as input features for the network.

Multiclass neural networks are utilized in the $\tau_h \tau_h$ and $e\mu$ channels due to the presence of two dominant backgrounds in each channel. In the $\tau_h \tau_h$ channel, a network is trained to sort events in three classes: events that are likely to be from the $Z \rightarrow \tau \tau$ production, VBF Higgs production, and background events from processes with jets misidentified as τ_h candidates, using the same features as the $\ell \tau_h$ network. For the $e\mu$ channel, the network is trained to classify events into three classes: $Z \rightarrow \tau \tau$, VBF, and t \bar{t} . The $e\mu$ channel utilizes the same features as the $\ell \tau_h$ network, but also includes the jet multiplicity and p_{ζ} .

