# Logging and Traceability

who, what, when, where, how ... why?

David Crooks

UKRI STFC

EGI CSIRT/IRIS Security team

david.crooks@stfc.ac.uk





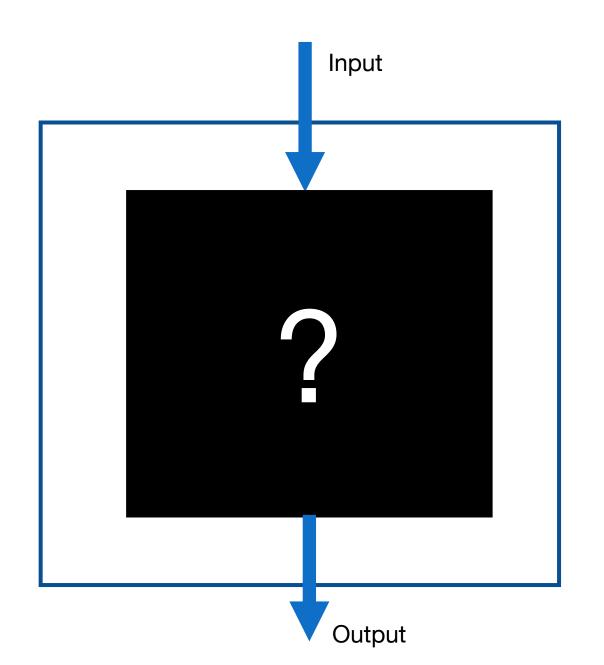






#### Introduction

- Logging basics
- Central logging
- Data Protection
- Network logging


#### **Preamble**

 Assessing your risk and having visibility of your services and systems is absolutely essential

 Everything we're about to discuss assumes that - to some extent - our area has been assessed for risk

# Why do we log?

- To know what happened in as much detail as necessary
- Often, security concerns are an extension of operations
  - What happened?
  - When did it happen?
  - Where did it happen?
  - How did it happen?
  - Why did it happen?



#### **Examples**

Why did this data transfer fail?

 Why did this job only complete partially?

 Which endpoints were involved in this process?

What did the attacker do?

# Day to day life

 Logs are an integral part of our technical lives

 But as we head heard yesterday, with this ubiquity comes careful consideration

Application logs

System logs

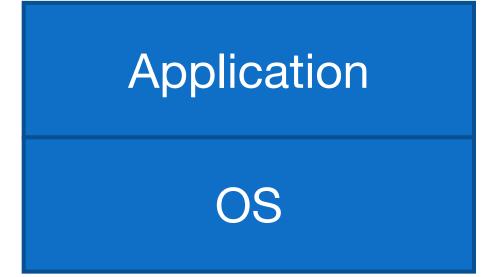
**Application** 

System

- Application logs
  - Apache
  - Drupal
  - Ceph
  - Dcache
  - •

Application

System


Application logs

These depend on the service

 Talk again in traceability, but: service owners are best placed to understand what is useful! Application

System

- System logs
- Give us an understanding of the behaviour of the system itself
  - Direct access via ssh
  - System behaviour
  - Auditing over time
- These paths will be for RHEL Distros



- System logs
  - /var/log/audit.log

type=USER\_AUTH msg=audit(1655751006.984:3758): pid=26347 uid=0 auid=4294967295 ses=4294967295 subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 msg='op=pubkey\_auth rport=35186 acct="centos" exe="/usr/sbin/sshd" hostname=? addr=A.B.C.D terminal=? res=success'

type=USER\_AUTH msg=audit(1655751006.984:3759): pid=26347 uid=0 auid=4294967295 ses=4294967295 subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 msg='op=key algo=ssh-rsa size=4096

fp=SHA256:48:43:a1:08:47:36:a3:69:1a:d0:72:24:58:f3:e3:07:7d:99:ce:0b:bd:d5:cd:fb:10:bc:37:18:cf:f8:4a:a4 rport=35186 acct="centos" exe="/usr/sbin/sshd" hostname=? addr=A.B.C.D terminal=? res=success'

type=USER\_ACCT msg=audit(1655751006.994:3760): pid=26347 uid=0 auid=4294967295 ses=4294967295

subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 msg='op=PAM:accounting grantors=pam\_unix,pam\_localuser acct="centos" exe="/usr/sbin/sshd" hostname=X.Y.Z addr=A.B.C.D terminal=ssh res=success'

type=CRYPTO KEY USER msg=audit(1655751006.994:3761): pid=26347 uid=0 auid=4294967295 ses=4294967295

subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 msg='op=destroy kind=session fp=? direction=both spid=26348 suid=74 rport=35186

laddr=A.B.C.D 6 lport=22 exe="/usr/sbin/sshd" hostname=? addr=A.B.C.D terminal=? res=success'

type=USER\_AUTH msg=audit(1655751006.996:3762): pid=26347 uid=0 auid=4294967295 ses=4294967295

subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 msg='op=success acct="centos" exe="/usr/sbin/sshd" hostname=? addr=A.B.C.D 6 terminal=ssh res=success'

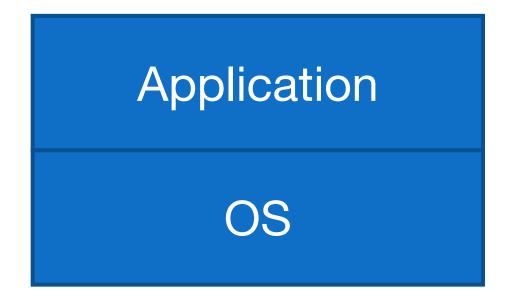
type=CRED\_ACQ msg=audit(1655751006.996:3763): pid=26347 uid=0 auid=4294967295 ses=4294967295

subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 msg='op=PAM:setcred grantors=pam\_env,pam\_unix acct="centos" exe="/usr/sbin/sshd" hostname=X.Y.Z addr=A.B.C.D terminal=ssh res=success'

type=LOGIN msg=audit(1655751006.996:3764): pid=26347 uid=0 subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 old-auid=4294967295 auid=1000 tty=(none) old-ses=4294967295 ses=215 res=1

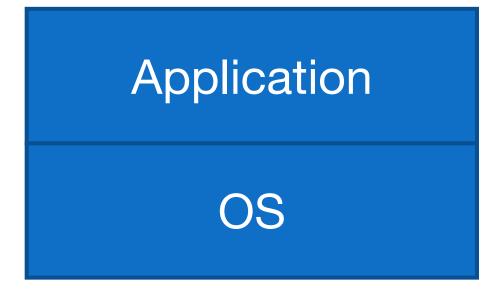
type=USER\_ROLE\_CHANGE msg=audit(1655751007.128:3765): pid=26347 uid=0 auid=1000 ses=215 subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 msg='pam: default-context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 selected-

context=unconfined\_u:unconfined\_r:unconfined\_t:s0-s0:c0.c1023 exe="/usr/sbin/sshd" hostname=X.Y.Z addr=A.B.C.D terminal=ssh res=success'


type=USER\_START msg=audit(1655751007.145:3766): pid=26347 uid=0 auid=1000 ses=215 subj=system\_u:system\_r:sshd\_t:s0-s0:c0.c1023 msg='op=PAM:session\_open

grantors=pam\_selinux,pam\_loginuid,pam\_selinux,pam\_namespace,pam\_keyinit,pam\_keyinit,pam\_limits,pam\_systemd,pam\_unix,pam\_lastlog acct="centos" exe="/usr/sbin/sshd" hostname=X.Y.Z addr=A.B.C.D 6 terminal=ssh res=success'

#### Application


OS

- System logs
  - /var/log/audit.log
- aureport can be used to get summary information



- System logs
  - /var/log/audit.log

```
Summary Report
_____
Range of time in logs: 01/01/70 01:00:00.000 - 21/06/22 07:46:12.034
Selected time for report: 01/01/70 01:00:00 - 21/06/22 07:46:12.034
Number of changes in configuration: 0
Number of changes to accounts, groups, or roles: 0
Number of logins: 3
Number of failed logins: 0
Number of authentications: 9
Number of failed authentications: 0
Number of users: 2
Number of terminals: 5
Number of host names: 4
Number of executables: 4
Number of commands: 2
Number of files: 0
Number of AVC's: 0
Number of MAC events: 0
Number of failed syscalls: 0
Number of anomaly events: 0
Number of responses to anomaly events: 0
Number of crypto events: 35
Number of integrity events: 0
Number of virt events: 0
Number of keys: 0
Number of process IDs: 21777
Number of events: 164767
```



- System logs
  - Auditbeat
- Part of the elasticsearch
   Beats set of tools that can
   also extract and effectively
   parse audit data

- System logs
  - /var/log/messages

Records global log messages, system notifications including those during boot

- System logs
  - /var/log/secure

Records successes and failures for users using ssh to access the system

- System logs
  - /var/log/secure

```
Jun 19 22:18:36 hostname sshd[26877]: Accepted publickey for user from A.B.C.D port 60096 ssh2: RSA SHA256:...
```

Success!

- System logs
  - /var/log/secure

```
Jun 20 19:08:58 hostname sshd[7555]: Invalid user admin from A.B.C.D port 36844
```

- System logs
  - /var/log/secure

```
Jun 20 19:08:58 hostname sshd[7555]: Invalid user admin from A.B.C.D port 36844
```



Application

OS

- System logs
  - /var/log/secure

... this is why you harden your systems (although only a *real* problem if they succeed)

A primary source of checking for malicious access

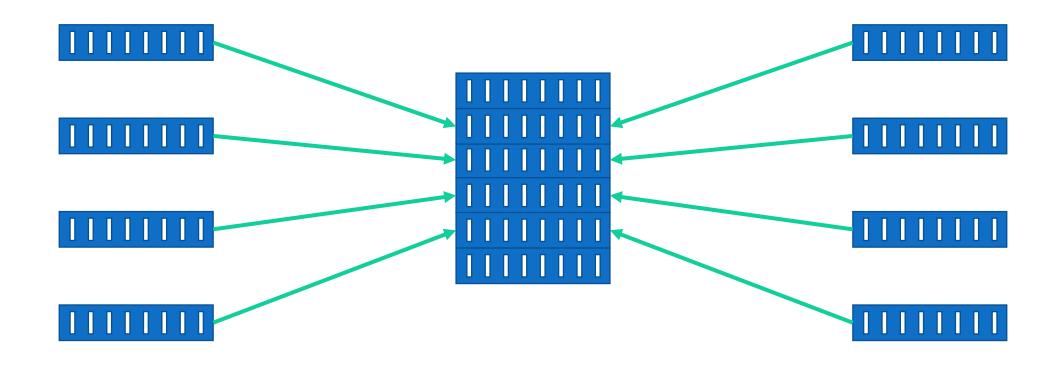
Unless?

#### A successful attacker

• Gains access via a weak password (password2022-2)

 Installs a compiler, builds some code...

 ... hides their tracks by truncating the logs


# **Central logging**

Logs are data

Vulnerable to deletion or corruption

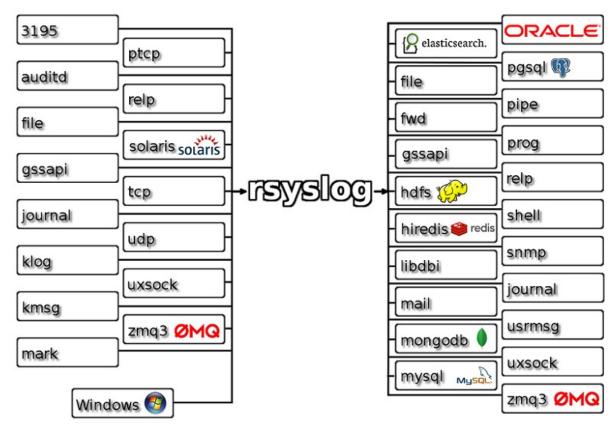
Back them up!

## **Central logging**



## **Central logging**

 One of the single most important things to do for the security of a service


Helps incident response

Helps correlate logs between hosts

# rsyslog

 rsyslog is a well-featured logging engine

 rsyslog and syslog-ng are both feature-rich successors to the original syslog



https://www.rsyslog.com

#### rsyslog and other tools

 Especially at this point, storing raw logs is not the most useful

 Use a tool like elasticsearch to allow better searching an querying of the data

## OSSEC/Wazuh

 OSSEC is a very nice hostbased IDS that will aggregate logs in a server/client topology



Customisable rules

Very flexible

## OSSEC/Wazuh

 Wazuh is a modern development of OSSEC that integrates tightly with elasticsearch

 Important when considering defence in depth – having one exactly one tool to monitor your system is **not** optimal (necessary ©)

#### wazuh.

https://wazuh.com/

## Wazuh/OSQuery

- Wazuh can monitor many useful things at the host level
  - File integrity + checksums
  - Configuration Assessment
  - Extended Detection and Response
- OSQuery is a nice tool that provides an SQL interface to system information



https://wazuh.com/



https://osquery.io

# System + application logs

 Discussed some key system logs

 Application logs are best understood by their service owners: how to choose what you need?

# System + application logs

 We can't store an infinite amount of logs

And we don't want to

" too much data looks like noise"

# **Data protection**

• I am not a lawyer ©

## **Data protection**

 We are in an era where individual privacy rights are taken particularly seriously

 This is not something that should hinder our security work • GDPR

• CERN OC11

 Development of UK data protection laws

Working with laws in other countries

#### **GDPR and CSIRT activities**

- In GDPR and associated findings the exchange of logs for incident response is recognized as a useful activity
- https://www.first.org/blog/20171 211\_GDPR\_for\_CSIRTs
- We do need to be careful about what we store, why, and for how long

## Log retention

 In WLCG, for a long time 90 days was the retention period set by policy

 Now moving towards 180 days or more: why?

## Log retention

 The number of incidents that have their beginning many months ago

 Only having logs for 90 or 180 days means we lose visibility

• 12 – or 13 – months is where we might set our sights

### Log retention: practical matters

- Of course, there are practical matters
  - Logs take up room
- Central logging also makes capacity planning easier
  - Build to a set of services that are logged
- Continuous improvement is important

### Log retention: practical matters

 Our architecture will suggest where and how many logs we can keep

This can and should evolve over time

 Focus on sustainable development

### **Traceability**

- For security, we want the logs that will help us piece together a set of events
  - When did someone gain access?
  - What did they do on the host?
  - Where did they go next?
  - What other hosts did they talk to?

## **Traceability**

 Traceability is the ability for us to trace the activity associated with a particular user and/or particular workflow

- Want to be able to track the entire lifecycle
  - Initiation
  - Primary events
  - (External) communications
  - Closeout

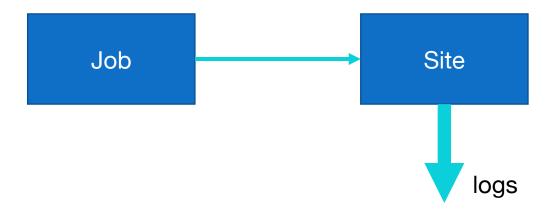
### **Traceability**

- Core system logs are essential; for application logs we want anything that helps piece these together
- Debug logs don't help with this
- It is likely that this will **also** evolve over time
- Make a plan and iterate based on your risks and resources

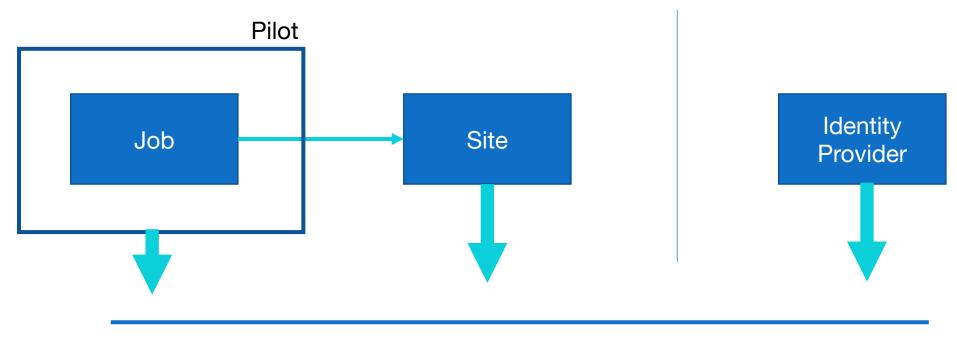
## **Split traceability**

 Our the, current circumstances, it is highly likely that the logs from a particular service – or even facility – will not be sufficient to track the activity of a user or group

Why?


## **Split traceability**

 In research and education, invariably work as part of a bigger infrastructure, federation or federation of federations


## **Split traceability**

- Many (most!) of our activities involve many services composed together
  - WLCG pilot jobs
  - Cloud services
- We can **no longer** rely on the logs on a single host/in a single facility to assemble the full picture of a user's activity

# grid jobs: before



## pilot jobs: after



**CSIRT** coordination

### **Cloud services**

Individual code Project services Project infrastructure OpenStack infrastructure

## How do we check we our traceability?

Planning and policy

Collaboration and cooperation

Testing

 Find use cases that are appropriate for you and try them out!

## **Network logging**

 We've talked about host based logs

 What's happening on the network?

## Sources of network logs

Routers

Host-based generators

Monitoring

### **Netflow and sflow**

- Netflow and sflow are different but similar methods of storing metadata about network connections
  - Endpoints/duration/...
- Most switches we'll use will generate one or the other
- Can generate on-host
  - hsflowd

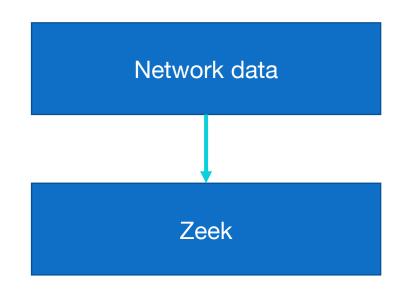
Netflow came from Cisco

sflow came from InMon

### **Netflow and sflow**

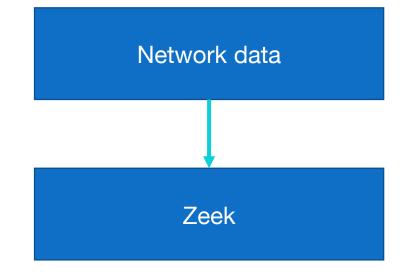
- Pros
  - Ubiquitous
  - Easy to generate
- Cons
  - Sampled
- In general, have sampled data from netflow and sflow
  - Useful for long term connections but not forensically useful

#### **Netflow and sflow**


- Netflows are especially useful at a high level
  - NRENS
- You can produce 1:1 data, but...

### **Deep Packet Inspection**

- Using a tool that analyses every packet it sees will yield rich information
  - Metadata
  - File information
  - Certificate information...
- Can't see inside encrypted streams unless you do decryption


#### Zeek

- Zeek is an example of a current network IDS in broad use in the US and EU
  - Ingest data by taking tap of network traffic
  - Optical or port spanning
- Single threaded, works by running a set of scripts against each packet
  - Scale out by building a zeek batch farm



### Zeek

- This gives us forensic level results
  - Every packet is tracked
- But this is computationally expensive
  - Need care in choosing deployment



More on this soon

- We need to retain logs that describe the activity of our users and services
  - For long enough to perform forensics
  - Following our legislation
  - Pragmatically for our environment

- We can identify logs in our services that will help with this
  - System
  - Application
- We can centrally log these
  - And should!

 We need to consider traceability in being able to piece together the events related to a particular user or activity

 This is very likely to require composition with other sources including other sites

 In addition to host-based logs, we can also log traffic from our networks

- {Net,s}flow generally give sampled, high-level metadata
- Deep packet inspection gives us greater, forensic detail
  - But more computationally intensive

# **Questions?**