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Why reactors?
� 3% of the energy release in �ssion is in neutrinos

– 100 MW for a power reactor or about� 1021 s� 1

� Built for weapons, energy, . . .
– not paid from physics budget

� Flavor pure source with well understood �ux and
energy spectrum

� Inverse beta decay provides a well understood,
�avor tagging detection reaction with a “large”
cross section

� Inverse beta decay has a clean experimental
signature – delayed coincidence
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Beta decay
Fermi developed a �rst theory of beta decay (1934):

n ! p + e� + �

or in a nuclear bound state

(Z; A) ! (Z + 1; A) + e� + �

Inverse beta decay

� + p ! n + e+

Bethe and Peierls estimate the cross section to be:

� '
~3

m3c4�
(E � =mc2)2 ' E 2

� 10� 43 cm2
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Neutrinos from �ssion
235U + n ! X 1 + X 2 + 2n

with average masses ofX 1 of about A=94 andX 2 of
about A=140.X 1 andX 2 have together 142 neutrons.

The stable nuclei with A=94 and A=140 are94
40Zr and

140
58 Ce, which together have only 136 neutrons.

Thus 6� -decays will occur, yielding 6�� e.

Fissioning 1kg of 235U gives1024 neutrinos, or at
distance of 50 m about1016 cm� 2.
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Ca. 1951

NUCLEAR EXPLOSIVE

- F I R E B A L L

- - I

Reines' Nobel Lecture, 1995
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Reines & Cowan's day
job was to instrument
nuclear weapons tests.

Bethe and Fermi thought
this was a good idea
and thus, not surpris-
ingly their A-bomb pro-
posal was approved.
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Delayed coincidence
Incident

antineutrino

Positron
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Inverse
beta

decay

Gamma rays
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Neutron capture

Liquid scintillator 
and cadmium 

This is the basis for all reactor neutrino experiments
since then.
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Savannah River
P-reactor became operational in Feb 1954, 500MW,
heavy water cooled, plutonium production reactor.
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1956

They report a cross section (!) of6 � 10� 44 cm� 2.
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Long list of SBL experiments

Giunti 2016
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Palo Verde & CHOOZ
Late 1990's inspired by KamiokaNDE

800 m from a commercial
reactor

1100 m from a commercial
reactor

Null result in both.
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KamLAND – 2002

1000 t of liquid organic
scintillator, undoped, deep
underground.
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KamLAND – results
KamLAND con�rmed
the oscillation interpreta-
tion of the solar neutrino
results and “picked” the
so-called LMA solution.

Later it was the �rst exper-
iment to see an oscillatory
pattern.
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Daya Bay – 2011
In a 1 reactor, 2 detector setup all �ux related errors
cancel completely in the near-to-far ratio.

A careful choice of detec-
tor locations mitigates the
complexity of the Daya Bay
layout.

AD3 sees the same ratio of
Ling Ao I to Ling Ao II events
as do the far detectors.
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Daya Bay – results

More than 2.5 million
IBD events.

Most precise measure-
ment of� 13

Precise measurement of
� m2

32

RENO and Double
Chooz are very similar
in concept and results
between agree very well.
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JUNO – under construction
JUNO – Jiangmen Underground Neutrino
Observatory

20,000 ton undoped liq-
uid scintillator

53 km from two pow-
erful reactor complexes,
18 GW each

Start of data taking�
2024.
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JUNO – physics goals

Measurement of mass hierarchy w/o matter effects
1% level measurement of solar mixing parameters
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The reactor anomaly
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Daya Bay, 2014

Muelleret al., 2011, 2012– where have all the
neutrinos gone?
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Status quo early 2021

3 different �ux mod-
els, data from 2 differ-
ent experiments

Except for U235:
+ the models agree
within error bars
+ the models agree with
neutrino data
U235 has smallest error
bars, not surprising that
discrepancies show up
�rst.

Berryman, PH, 2020
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Fuel evolution

Berryman, PH, 2020
STEREO, 2020

U235 seems to “own” all of the de�cit.
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The 5 MeV bump
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Daya Bay 2016

Double Chooz IV - ND

Double Chooz 2019
Contains only 0.5% of all neutrino events – not
important for sterile neutrinos

Yet, statistically more signi�cant than the RAA!
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Why is this so complicated?

N=50 N=82

Z=50

235U

239Pu

stable

fission yield

8E- 5 0.004 0.008
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� -branches
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Two ways to predict
Summation calculations

Fission yields
Beta yields

Problem: databases are in-
suf�cient & dif�culty of
assigning an error budget

Conversion calculations

Cumulative beta spectra
Ze� from databases

Problem: single set of
cumulative beta spectra &
forbidden corrections have
to rely on databases

In both approaches, one has to deal with:
Forbidden decays
Weak magnetism corrections
Non-equilibrium corrections
Structural materials in the reactor
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Summation method – EF
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Estienneet al., 2019

Take �ssion yields from
database.

Take beta decay informa-
tion from database.

For the most crucial
isotopes use � -feeding
functions from total
absorption
 spectroscopy.
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Conversion method – HM

235U foil inside the High
Flux Reactor at ILL

Electron spectroscopy
with a magnetic spec-
trometer

Same method used for
239Pu and241Pu

Mueller et al., 2011; PH,
2011

Schreckenbach,et al. 1985.
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Virtual branches
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1 – �t an allowed� -spectrum with free normalization� and
endpoint energyE0 the lasts data points
2 – delete the lasts data points
3 – subtract the �tted spectrum from the data
4 – goto 1
Invert each virtual branch using energy conservation into a
neutrino spectrum and add them all.
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Shell model – HKSS

Hayen,et al. 2019

Forbidden decays major
source of systematic.

Microscopic shell model
calculation of 36 forbidden
isotopes, otherwise similar to
HM.

Increases the IBD rate
anomaly by 40%, but the
uncertainty increases by only
13% relative to HM
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Kill BILL?

Neutron �ux calibration standards different for U235 and Pu239:
207Pb and 197Au respectively.

Combined with potential differences in neutron spectrum – room
for a 5% shift of U235 normalization?
A. Letourneau, A. Onillon, AAP 2018
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2021 beta measurement

Relative measurement of
U235 and Pu239 tar-
gets under identical con-
ditions.

Beta detection with stil-
bene.

This slide and the following are based onV. Kopeikin, M.
Skorokhvatov, O. Titov (2021)andV. Kopeikin , Yu. Panin, A.
Sabelnikov (2020)and we will refer to this as the Kurchatov
Institute (KI) data.
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2021 beta results

At relevant energies
the new measurement
is about 5% below the
previous one

Systematics is dif�-
cult in these measure-
ments, but no obvious
issues.
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2021 beta impact
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Based on table V of Giunti, Li, Ternes, Xin, arXiv:2110.06820

0.85 0.90 0.95 1.00

ratio experiement/predicion

HM – conversion
HKSS – conversion

+ forbidden decays
EF – summation

unclear theory error
KI – HM + KI data
HKSS+KI – HKSS +KI

With the KI correction agree-
ment between summation and
conversion improved.

RAA signi�cance reduced to
less than2�
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Oscillations are everywhere

Coloma, PH, Schwetz, 2020

Hypothetical two
baseline experiment

Maximum likelhood
estimate is biased and
not consistent.

Wilks' theorem does
not apply

Agostini, Neumair, 2019; Silaeva, Sinev, 2020; Giunti, 2020
PROSPECT+STEREO, 2020
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Global reactor data

Berryman, Coloma, PH,
Schwetz, Zhou 2021

� � 2 = 7:3 for no-
oscillation hypothesis,
�ux model-independent
Solar data provides a
strong constraint at large
sin2 2�

Feldman-Cousins p-value 24.7% (1.1� )
) no evidence for oscillation

No tension with Neutrino-4 P. Huber – p. 34/40



Gallium anomaly
Radioactive source experiments

GALLEX GALLEX SAGE SAGE
BEST BEST
(inner) (outer)

0:953 � 0:11 0:812 � 0:10 0:95 � 0:12 0:791 � 0:084 0:791 � 0:044 0:766 � 0:045

Nuclear matrix elements

ground state
follows from beta
decay
excited states?
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Gallium and solar

BCHSZ 2021

Any model for the
matrix element yields
than 5� for the gal-
lium anomaly, even the
ground state contribu-
tion by itself.

BUT, there is a more than 3� tension with solar data.
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All together now

BCHSZ 2021

Full FC analysis

Reactor+solar:
1.1�
Reactor+gallium:
5.3-5.7�

Evidence for neutrino disappearance entirely driven
by gallium results,
only tension gallium vs solar at> 3� .
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CEvNS
Coherent elastic neutrino
nucleus scattering (CEvNS)
is threshold-less.

d�
dT

=
G2

F

4�
N 2M N

�
1 �

M N T
2E 2

�

�

T recoil energy,N neutron number

� Measured for the 1st time in 2017 by
COHERENT.

� Perfect proxy for dark matter detection
� Requires nuclear recoil (!) threshold of less than

1 keV
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Hic sunt leones

Shown is the data of a number of
different dark matter/CEvNS ex-
periments below 1 keV as reported
at the EXCESS workshop 2021
https://indico.cern.ch/event/1013203/.

Observed accross a wide range of technologies and
shielding con�gurations – origin unknown!

Reactor CEvNS is a critical testbed for dark matter
detection.
Optical detection of crystal defects as technological
alternative?Goel, Cogswell, PH 2021

P. Huber – p. 39/40



Outlook
Reactors as neutrino source are cheap, bright and
clean.
The reactor antineutrino anomaly is likely due to
�awed input data and not due to new or nuclear
physics.
No evidence for�� e disappearance from reactors, but
from gallium,> 5� !
Reactor CEvNS as proving ground for dark matter
searches

Rich potential for applications (not covered here, see
my previous CERN TH colloquium)
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