

Analysis Update: $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s}=5.02~{\rm TeV}$

Tutor: Dr. Antonio Ortiz Velásquez

Luz Elena Tiscareño Montoya Paola Vargas Torres

Tuesday, December 14th 2021

1D Unfolding of distributions $N_{\rm ch}^{\rm TS}$

Purpose: To obtain a better estimate of the true distribution of the multiplicity of charged particles from the development of experimental distributions.

Luz Tiscareño & Paola Vargas

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s} = 5.02 {\rm ~TeV}$

Instituto de Ciencias Nucleares, UNAM

 $N_{\rm ch\ true}^{\rm TS}$: True multiplicity in the Transverse region.

 $P(N_{\text{acc}}^{\text{TS}} | N_{\text{ch.true}}^{\text{TS}})$: Multiplicity response matrix.

the Transverse region.

 $N_{\rm acc}^{\rm TS}$: Multiplicity distribution of measured events in

2D Unfolding of $p_{\rm T}$ spectra

First: Apply the tracking efficiency and secondary particle contamination

Second:

Multiplicity response
matrix, $P(N_{acc}^{TS} | N_{ch,true}^{TS})$ Weight of the number
of measured particles

Luz Tiscareño & Paola Vargas

Instituto de Ciencias Nucleares, UNAM

 p_{T} spectra as a function of R_{T} for pp collisions at $\sqrt{s}=5.02~\mathrm{TeV}$

Weekly Report

☑Run on GRID - improvement in the percentage of accepted jobs.

Jobs Ov	verview	
State	J	obs
	#	%
)one	210	61.4
irror_V	29	8.5
rror_E (TTL)	1	0.3
rror_E (mem)	66	19.3
rror_E (disk)	0	0.0
Error E_W	0	0.0
Other	36	10.5

Luz Tiscareño & Paola Vargas

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s} = 5.02 {\rm ~TeV}$

Response matrices and correction factor

Luz Tiscareño & Paola Vargas

Instituto de Ciencias Nucleares, UNAM

 p_{T} spectra as a function of R_{T} for pp collisions at $\sqrt{s}=5.02~\mathrm{TeV}$

MC closure test

Luz Tiscareño & Paola Vargas

Instituto de Ciencias Nucleares, UNAM

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s} = 5.02 {\rm ~TeV}$

Luz Tiscareño & Paola Vargas

Instituto de **Ciencias**

Nucleares

UNAM

$p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s} = 5.02 {\rm ~TeV}$

Instituto de Ciencias Nucleares, UNAM

Instituto de Ciencias Nucleares, UNAM

Luz Tiscareño & Paola Vargas

Instituto de Ciencias

Nucleares

UNAM

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm ~TeV}$

Transverse Side

Luz Tiscareño & Paola Vargas

Instituto de Ciencias Nucleares, UNAM

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s}=5.02~{\rm TeV}$

Next steps

□ Run on GRID - MC (pp, p+Pb, Pb+Pb) with modes MC closure and normal. Also with data pp, p+Pb and Pb+Pb.

□ Analyze the results.

Luz Tiscareño & Paola Vargas

Instituto de Ciencias Nucleares, UNAM

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s}=5.02~{\rm TeV}$

