
Charge Transport in a GEM
RD51 Simulation School

January 19, 2011

Outline

Using the Ansys field map calculated in the morning, we will simulate the
drift of electrons and ions in a GEM.

In particular, we will discuss how to

import and inspect the field map,

setup the gas mixture,

compute an electron avalanche,

transport the ions created in the avalanche, and

calculate ion feedback and charging up.

Garfield++
Layout

Medium

material poperties

gas → Magboltz

silicon

Detector Description

Geometry

Component

field calculation

analytic

field maps

neBEM

Sensor

Transport

Drift

charge transport

microscopic

MC

RKF

Track

primary ionisation

Heed

...

Garfield++

Classes

In this exercise we will use:

MediumMagboltz

ComponentAnsys123

Sensor

AvalancheMicroscopic, AvalancheMC

a couple of classes for visualization purposes (View...)

ROOT histograms

Garfield++

How To Run

1 interactively, on the ROOT command line

$GARFIELD_HOME/Examples/Test/garfroot

→ useful for simple tests, playing

2 in compiled mode, writing a small program

Note The Garfield++ classes are enclosed in a namespace
Garfield. In the following examples, either add
Garfield:: in front of the class names or make them
globally acessible

using namespace Garfield;

Field Map
Initialisation

The initialisation of ComponentAnsys123 consists of

loading the mesh (ELIST.lis, NLIST.lis), the list of nodal
solutions (PRNSOL.lis), and the material properties (MPLIST.lis);

specifying the length unit to be used;

setting the appropriate periodicities/symmetries.

ComponentAnsys123* fm = new ComponentAnsys123();

// Load the field map.

fm->Initialise("ELIST.lis", "NLIST.lis", "MPLIST.lis", "PRNSOL.lis", "mm");

// Set the periodicities.

fm->EnableMirrorPeriodicityX();

fm->EnableMirrorPeriodicityY();

// Print some information about the cell dimensions.

fm->PrintRange();

Field Map
Plots

Next, we inspect the field map to make sure it makes sense. Using the
class ViewField, we first make a plot of the potential along the hole axis
(z axis).

ViewField* fieldView = new ViewField();

fieldView->SetComponent(fm);

// Plot the potential along the hole axis.

fieldView->PlotProfile(0., 0., 0.02, 0., 0., -0.02);

Let’s also make a contour plot of the potential in the x − z plane.

const double pitch = 0.014;

// Set the viewing plane (normal vector) and ranges.

fieldView->SetPlane(0., -1., 0., 0., 0., 0.);

fieldView->SetArea(-pitch / 2., -0.02, pitch / 2., 0.02);

fieldView->SetVoltageRange(-160., 160.);

fieldView->PlotContour();

Gas

We use a gas mixture of 80% argon and 20% CO2 at room temperature
(T = 293.15 K) and atmospheric pressure (p = 760 Torr).

MediumMagboltz* gas = new MediumMagboltz();

gas->SetComposition("ar", 80., "co2", 20.);

// Set temperature [K] and pressure [Torr].

gas->SetTemperature(293.15);

gas->SetPressure(760.);

As the name suggests, the class MediumMagboltz provides an interface
to the Magboltz program.

Magboltz

Using semi-classical MC simulation, Magboltz (author: S. Biagi)
calculates transport properties of electrons in gas mixtures in a given
uniform electric and magnetic field.

It includes a database of electron-atom/molecule cross-sections for a
large number of detection gases (see
http://rjd.web.cern.ch/rjd/cgi-bin/cross).

Source code of stand-alone program (latest version: 8.93) is
available at http://cern.ch/magboltz

Microscopic Tracking

Use Magboltz cross-section database and transport algorithm for
”event-by-event” electron transport in arbitrary fields.

http://rjd.web.cern.ch/rjd/cgi-bin/cross
http://cern.ch/magboltz

Magboltz

A description of the program is given in

S. F. Biagi, Nucl. Instr. Meth. A 421 (1999), 234-240

Recent Updates

detailed modelling of excitation cross-sections (previously lumped
together)→ deexcitation processes (Penning transfer, light emission)

improved modelling of angular scattering → diffusion, δ electron
range

cross-sections extended to high electron energies → primary
ionisation, δ electron transport

Magboltz
Cross-sections, collision rates, and what to do with it

0.1

1

10

100

1000

0.1 1 10 100

σ
[M

b
ar

n
]

energy [eV]

Argon

elastic ionisation

Cross-sections

elastic
vibrations,
rotations
excitations
attachment
ionisation

Collision rate

τ−1
i (ε) = Nσ (ε) v

Magboltz
Cross-sections, collision rates, and what to do with it

0.001

0.01

0.1

1

10

100

1000

0.1 1 10 100

σ
[M

b
ar

n
]

energy [eV]

CO2

elastic
rotations

ionisation

attachment

excitations vibrations

Cross-sections

elastic
vibrations,
rotations
excitations
attachment
ionisation

Collision rate

τ−1
i (ε) = Nσ (ε) v

Magboltz
Cross-sections, collision rates, and what to do with it

Transport Algorithm

Between collisions, electrons are traced on a vacuum trajectory,
according to the local E and B field.

The duration of a free-flight step is controlled by the total collision
rate, τ−1 =

∑
i τ

−1
i (ε).

change of energy during step → null-collision technique

Calculate energy, direction and position after the step.
ε (t)→ ε (t + ∆t) , r (t)→ r (t + ∆t) , v (t)→ v (t + ∆t)

Choose a scattering process.
probability of scattering process i is proportional to τ−1

i (ε)

Depending on the type of collision, update the energy and the
direction of motion, and continue stepping.

Magboltz

Example: drift velocity vd in Ar/CO2 (80:20),
at p = 760 Torr, T = 293.15 K

electric field [V/cm]
310 410

dr
if

t v
el

oc
ity

 [
cm

/n
s]

0

0.005

0.01

0.015

0.02

0.025

Gas

For microscopic transport, we skip the calculation of the table of
transport parameters (vd ,DL,DT , α, η etc.) and load directly the
cross-sections from the Magboltz database.

The collision rates τ−1
i are stored on an evenly spaced energy grid

(0 < ε < εmax), where εmax can be set by the user.

For avalanche calculations, εmax ≈ 50− 200 eV is usually a
reasonable choice.

gas->SetMaxElectronEnergy(200.);

gas->EnableDebugging();

gas->Initialise();

gas->DisableDebugging();

Gas ↔ Field Map

In order to track a particle through the detector we have to tell the
Component which field map material corresponds to which Medium.

Print a list of the field map materials:

fm->PrintMaterials();

The gas can be identified by its dielectric constant, in our case ε = 1.

const int nMaterials = fm->GetNumberOfMaterials();

for (int i = 0; i < nMaterials; ++i) {

const double eps = fm->GetPermittivity(i);

if (eps == 1.) fm->SetMedium(i, gas);

}

Sensor

Finally, we have to create a Sensor class, which is basically an
assembly of ”components”.

In general, a detector can be described by several ”components”,
thus allowing

electric, magnetic and weighting fields to be calculated using
different techniques;
fields from different components to overlap.

In our case, the Sensor has only one Component.

Sensor* sensor = new Sensor();

sensor->AddComponent(fm);

The Sensor class acts as an interface to the transport classes (and
also takes care of signal calculation).

AvalancheMicroscopic* aval = new AvalancheMicroscopic();

aval->SetSensor(sensor);

Electron Transport

We are now ready to track an electron through the GEM.

// Set the initial position [cm] and starting time [ns].

double x0 = 0., y0 = 0., z0 = 0.02, t0 = 0.;

// Set the initial energy [eV].

double e0 = 0.1;

// Calculate an electron avalanche (randomized initial direction).

aval->AvalancheElectron(x0, y0, z0, t0, e0, 0., 0., 0.);

...

In order to visualise the drift lines, we use the class ViewDrift.

ViewDrift* driftView = new ViewDrift();

driftView->SetArea(-2 * pitch, -2 * pitch, -0.02,

2 * pitch, 2 * pitch, 0.02);

aval->EnablePlotting(driftView);

aval->AvalancheElectron(x0, y0, z0, t0, e0, 0., 0., 0.);

// Plot the drift lines.

driftView->Plot();

Electron Transport
Initial Energy

Energy distribution in Ar/CO2 (80:20) in a constant drift field:

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

0 0.1 0.2 0.3 0.4 0.5

en
tr

ie
s

energy [eV]

600 V/cm

In the drift gap, E & 600 V/cm. At 600 V/cm, the mean electron energy
is ≈ 0.09 eV.

Electron Transport

After the calculation, we can extract information such as the number of
electrons/ions and their drift paths from AvalancheMicroscopic.

int ne, ni;

// Get the number of electrons and ions produced in the avalanche.

aval->GetAvalancheSize(ne, ni);

// Get the number of electron tracks.

int np = aval->GetNumberOfElectronEndpoints();

// Get the starting and endpoint of the first electron.

double x1, y1, z1, t1, e1;

double x2, y2, z2, t2, e2;

int status;

aval->GetElectronEndpoint(0, x1, y1, z1, t1, e1,

x2, y2, z2, t2, e2, status);

Penning Transfer

Excited Ar levels with energy greater than the ionisation threshold of
the admixture can enhance the gain due to photo-ionisation or
collisional ionisation.

In the simulation, this effect can be described in terms of a
probability r that an excitation is converted to an ionising collision.

Transfer efficiency r can be determined by gain curve fits, as
described in

Ö. Sahin et al., JINST 5 (2010), P05002.

For Ar/CO2 (80:20), r ≈ 0.51

// Probability of Penning transfer.

double rPenning = 0.51;

// Mean distance from the point of excitation.

double lambdaPenning = 0.;

gas->EnablePenningTransfer(rPenning, lambdaPenning, "ar");

Ion Transport

Microscopic transport is not available for ions. Unfortunately, there is no
”Magboltz” for ions either, so we have to set the transport parameters
”by hand”.

Mobility
double emin = 100., emax = 100000.;

int ne = 20;

gas->SetFieldGrid(emin, emax, ne);

gas->LoadIonMobility("IonMobility_Ar+_Ar.txt");

Diffusion We assume thermal diffusion (default), i. e.

DL = DT =

√
2kBT

qE
.

Ion Transport
Mobility

Mobility of Ar+ ions in Ar (at T ≈ 300 K)

E/N µ0[
10−17V cm2

] [
cm2V−1s−1

]
< 12 1.53

15 1.52
20 1.51
25 1.49
30 1.47
40 1.44
50 1.41
60 1.38
80 1.32

100 1.27
120 1.22

E/N µ0[
10−17V cm2

] [
cm2V−1s−1

]
150 1.16
200 1.06
250 0.99
300 0.95
400 0.85
500 0.78
600 0.72
800 0.63

1000 0.56
1200 0.51
1500 0.46
2000 0.40

H. W. Ellis, R. Y. Pal, and E. W. McDaniel,

At. Data and Nucl. Data Tables 17 (1976), 177-210

Ion Transport

For tracking the ions we use the Monte Carlo integration technique.

AvalancheMC* drift = new AvalancheMC();

drift->SetSensor(sensor);

// Integrate in constant (2 um) distance intervals.

drift->SetDistanceSteps(2.e-4);

MC Algorithm

Compute a step length ∆s according to the velocity at the local field
and the specified time step.

Generate a diffusion step, based on DL and Dt , scaled by
√

∆s,
randomize according to 3 uncorrelated Gaussian distributions.

Update the location by adding the step due to the velocity and the
random step due to diffusion.

Ion Transport

To calculate an ion drift line, we do

double x0 = 0., y0 = 0., z0 = -0.02;

double t0 = 0.;

drift->DriftIon(x0, y0, z0, t0);

// Get the initial and final location of the ion.

double x1, y1, z1, t1;

double x2, y2, z2, t2;

int status;

drift->GetIonEndpoint(0, x1, y1, z1, t1, x2, y2, z2, t2, status);

Plotting the drift line also works in the same way as for electrons

drift->EnablePlotting(driftView);

...

driftView->Plot();

Electrons and Ions

double x1, y1, z1, t1, e1;

double x2, y2, z2, t2, e2;

int status;

aval->AvalancheElectron(x0, y0, z0, t0, e0, 0., 0., 0.);

const int np = aval->GetNumberOfElectronEndpoints();

// Loop over the endpoints, i. e. the electron drift lines.

for (int j = np; j--;) {

// Get the start and end position of the electron.

aval->GetElectronEndpoint(j, x1, y1, z1, t1, e1,

x2, y2, z2, t2, e2, status);

// Calculate an ion drift line from the creation point of each electron.

drift->DriftIon(x1, y1, z1, t1);

}

Normally, particles are transported until they exit the mesh. To speed up
the calculation we restrict the drift region to −100µm < z < +200µm.

sensor->SetArea(-3 * pitch, -3 * pitch, -0.01,

3 * pitch, 3 * pitch, 0.02);

Your Turn...

In $GARFIELD HOME/Examples/Gem you find a basic program
gem.C.

Open the file with your favourite editor (emacs, vi, pico, ...) and
modify the code.

Compile the program (make gem), watch out for compiler
warnings/errors.

Execute the program (./gem).

Your Turn...

Exercise

How many electrons/ions are on average produced in the avalanche?

What is the fraction of ions drifting back to the cathode plane?

Where on the plastic do the electrons/ions end up (histogram)?

Your Turn...

With a statistics of 1000 avalanches:

ne ≈ 10, ni ≈ 9

Ion backdrift: ≈ 24%

Charge distribution

0

50

100

150

200

250

300

-20 -10 0 10 20

en
tr

ie
s

z [µm]

Questions?

Garfield++
Installation

The source code is hosted on a Subversion (svn) repository managed by
the CERN Central SVN service.

Make sure that ROOT is installed.

Define an environment variable GARFIELD HOME pointing to the
directory where the Garfield classes are to be located. If you are
using bash, type

export GARFIELD_HOME=/home/mydir/Garfield

(replace /home/mydir/Garfield by the path of your choice). Add
this line also to your .bashrc or .bash profile.

Download (”check out”) the code from the repository. For SSH
access, give the command

svn co svn+ssh://<usrname@>svn.cern.ch/reps/garfield/trunk $GARFIELD_HOME

Alternatively, you can also download the tarballs from
http://svnweb.cern.ch/world/wsvn/garfield.

http://svnweb.cern.ch/world/wsvn/garfield

Garfield++
Installation

Change to $GARFIELD HOME and compile the classes.

cd $GARFIELD_HOME; make

If necessary, adapt the makefile according to your configuration.

Heed requires an environment variable HEED DATABASE to be set.

export HEED_DATABASE=$GARFIELD_HOME/Heed/heed++/database

Add this line to your .bashrc as well.

At present, the code is still frequently modified. To get the latest version,
use the command svn update, followed by make (in case of problems,
try make clean; make).

Field Map
Element Checks

ComponentAnsys123* fm = new ComponentAnsys123();

...

// Create histograms for aspect ratio and element size.

TH1F* hAspectRatio = new TH1F("hAspectRatio", "Aspect Ratio",

100, 0., 50.);

TH1F* hSize = new TH1F("hSize", "Element Size",

100, 0., 30.);

const int nel = fm->GetNumberOfElements();

double volume;

double dmin, dmax;

for (int i = nel; i--;) {

fm->GetElement(i, volume, dmin, dmax);

if (dmin > 0.) hAspectRatio->Fill(dmax / dmin);

hSize->Fill(volume * 1.e9);

}

TCanvas* c1 = new TCanvas();

hAspectRatio->Draw();

TCanvas* c2 = new TCanvas();

c2->SetLogy();

hSize->Draw();

Electron Transport
Energy Distribution

Calculate the electron energy distribution in a flat field (E = 100 V/cm):

// Setup the gas.

MediumMagboltz* gas = new MediumMagboltz();

...

// Define the geometry (box with half-length 1 cm and half-width 10 um).

SolidBox* box = new SolidBox(0., 0., 0., 1., 1., 10.e-4);

GeometrySimple* geo = new GeometrySimple();

// Add the box to the geometry, together with the medium inside.

geo->AddSolid(box, gas);

// Create a component with constant electric field (100 V/cm along z).

ComponentConstant* component = new ComponentConstant();

component->SetGeometry(geo);

component->SetElectricField(0., 0., 100.);

// Assemble the sensor.

Sensor* sensor = new Sensor();

sensor->AddComponent(component);

...

Electron Transport
Energy Distribution

// Make a histogram (100 bins between 0 and 1 eV).

TH1D* hEnergy = new TH1D("hEnergy", "Electron energy", 100, 0., 1.);

// Microscopic tracking

AvalancheMicroscopic* aval = new AvalancheMicroscopic();

aval->SetSensor(sensor);

aval->EnableElectronEnergyHistogramming(hEnergy);

// Initial energy

double e0 = 1.5;

const int nEvents = 1000;

for (int i = nEvents; i--;) {

aval->AvalancheElectron(0., 0., 0., 0., e0, 0., 0., 0.);

// Draw a new initial energy.

e0 = hEnergy->GetRandom();

if (i % 100 == 0) std::cout << i << "/" << nEvents << "\n";

}

// Draw the histogram.

hEnergy->Draw();

	Appendix

