



### **The ESSnuSB project:** Measuring CP violation at the 2nd neutrino oscillation maximum

Budimir Kliček On behalf of the ESSnuSB project Ruđer Bošković Institute, Zagreb, Croatia Special thanks to my students: Martina Vujica, Leon Halić

High Energy Physics Seminar at the University of Warsaw



17 December 2021



### ESSnuSB

### A design study for an experiment to measure CP violation at 2nd neutrino oscillation maximum.



## CP violation in neutrino oscillations

Oscillation probability for neutrinos is different than oscillation probability for anti-neutrinos in vaccum.



#### CP violation in ESSnuSB

$$P_{\mu \to e} \neq P_{\overline{\mu} \to \overline{e}}$$

We will study  $v_{e}$  and  $\overline{v}_{e}$  appearance in  $v_{\mu}$  and  $\overline{v}_{\mu}$  beam, respectively

The plan:

- 1. Run with  $\nu_{\mu}$  and look at  $\nu_{e}$  appearance, then
- 2. Run with  $\overline{v}_{\mu}$  and look at  $\overline{v}_{e}$  appearance

# CP violation in neutrino oscillations

A crash course on why is 2<sup>nd</sup> oscillation maximum better

Neutrino flavour can effectively change between its creation and interaction.







 $|\nu_i\rangle$  has a mass  $m_i$ 

- $U_{\alpha i}$  is called the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix
  - $U_{\alpha i}$  must be unitary for probability conservation
    - for *n* generations of neutrinos it is a *n* x *n* complex matrix
    - here we focus on standard 3 neutrino generations

Flavour state evolution



Oscillation probability in vacuum

Oscillation probability:

$$P_{\alpha \to \beta} = \left| \left\langle \nu_{\beta} \middle| \nu_{\alpha}; t = T, \vec{x} = \vec{L} \right\rangle \right|^2$$

#### Assuming: $\vec{L}$ parallel to $\vec{p_i}$ $T = L/\beta \approx L$ $E_i + p_i \approx 2E$ - neutrino travels in the direction of its momentum

One gets the final relation:

 $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$  $A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*$ 

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(A_{ij}^{\alpha\beta}\right) \sin^2 \frac{\Delta m_{ij}^2 L}{4E} \pm 2\sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$

#### PMNS matrix parametrization (Dirac neutrino)

Standard parametrization used in modern literature:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$s_{ij} \equiv \sin \theta_{ij}$$

 $c_{ij} \equiv \cos \theta_{ij}$ 

- Analogue to Euler matrices used for 3D rotations
- This is **not** the most general unitary matrix parametrization a 3x3 unitary matrix has 6 phases
  - 5 phases can be canceled by rephasing charged lepton and neutrino fields
- A single leftover phase is always present in the middle factor

#### Neutrino oscillations (3 generations)

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{cp}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{cp}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{cp}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{cp}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{cp}} & c_{23}c_{13} \end{pmatrix} \begin{bmatrix} \mathsf{e} \\ \mathsf{\mu} \\ \mathsf{r} \end{bmatrix}$$

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(A_{ij}^{\alpha\beta}\right) \sin^2 \frac{\Delta m_{ij}^2 L}{4E} \pm 2\sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$

$$s_{ij} \equiv \sin \theta_{ij}$$

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2 \implies \Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$$

$$A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*$$

Six parameters in total:  $\Delta m_{21}^2, \Delta m_{32}^2, \theta_{12}, \theta_{13}, \theta_{23}, \delta_{cp}$ 

#### Muon neutrino oscillations



#### CP violation in vacuum

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(A_{ij}^{\alpha\beta}\right) \sin^2 \frac{\Delta m_{ij}^2 L}{4E} \pm 2\sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$



All three equations can be proven using the formula above.

CP violation "amplitude":  

$$P_{\alpha \to \beta} - P_{\overline{\alpha} \to \overline{\beta}} = 4 \sum_{i>j} \operatorname{Im} \left( A_{ij}^{\alpha \beta} \right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$

#### Jarlskog invariant



$$s_{ij} \equiv \sin \theta_{ij}$$

$$c_{ij} \equiv \cos \theta_{ij}$$

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

$$A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*$$

Imaginary part of  $A_{ij}^{\alpha\beta}$  is constant up to a sign for all  $\alpha \neq \beta$  and  $i \neq j$ , else it is zero

• this is a "measure" of CP violation in 3-generation neutrino model

 $J = s_{12}c_{12}s_{13}c_{13}s_{23}c_{23}c_{13}\sin\delta_{\rm CP}$  - Jarlskog inv 3-gen PMN

Jarlskog invariant in standard 3-gen PMNS parametrization

- J = 0 if any of the mixing angles  $\theta_{ij}$  is 0 or  $\pi/2$ , or  $\delta_{CP}$  is 0 or  $\pi$ 
  - in that case there is no CP violation
- $J \sim -0.03$  assuming current PDG central values

CP violation "amplitude":

$$P_{\alpha \to \beta} - P_{\overline{\alpha} \to \overline{\beta}} = 4 \sum_{i>j} \operatorname{Im} \left( A_{ij}^{\alpha \beta} \right) \sin \frac{\Delta m_{ij}^2 L}{15 \ 2E}$$

#### CP violation in ESSnuSB

General CP violation "amplitude":  

$$P_{\alpha \to \beta} - P_{\overline{\alpha} \to \overline{\beta}} = 4 \sum_{i>j} \operatorname{Im} \left( A_{ij}^{\alpha \beta} \right) \sin \frac{\Delta m_{ij}^2 L}{2E}$$

#### ESSnuSB CP violation

$$P_{\mu \to e} - P_{\overline{\mu} \to \overline{e}} = 4J \left( \sin \frac{\Delta m_{31}^2 L}{2E} - \sin \frac{\Delta m_{32}^2 L}{2E} - \sin \frac{\Delta m_{21}^2 L}{2E} \right)$$
$$= -16J \sin \frac{\Delta m_{31}^2 L}{4E} \sin \frac{\Delta m_{32}^2 L}{4E} \sin \frac{\Delta m_{21}^2 L}{4E}$$
$$J = s_{12}c_{12}s_{13}c_{13}s_{23}c_{23}c_{13} \sin \delta_{\rm CP}$$

To have CP violation we must have  $J \neq 0$ , but also  $\Delta m_{ij}^2 \neq 0$  --> all three masses must be different

$$s_{ij} \equiv \sin \theta_{ij}$$

$$c_{ij} \equiv \cos \theta_{ij}$$

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

$$A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*$$

$$s_{ij} \equiv \sin \theta_{ij}$$

$$c_{ij} \equiv \cos \theta_{ij}$$

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

$$A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*$$

#### CP violation in ESSnuSB

$$A_{CP} \equiv P_{\mu \to e} - P_{\overline{\mu} \to \overline{e}} = -16J \sin \frac{\Delta m_{31}^2 L}{4E} \sin \frac{\Delta m_{32}^2 L}{4E} \sin \frac{\Delta m_{21}^2 L}{4E}$$
$$\mathbf{E} = \mathbf{400} \ \mathbf{MeV}$$



$$\frac{A_{CP} @ 2nd \max}{A_{CP} @ 1st \max} \sim 2.7$$

- Does not depend on *J*, i.e. PMNS matrix elements
- Depends only on mass splittings

#### Matter effects

Distortion of oscillation probabilities due to elastic scattering of neutrinos with matter



- Elastic neutrino scattering can proceed through:
  - NC interactions for all flavour/mass eigenstates
  - CC interactions with electrons for electron neutrinos
- Therefore electron neutrinos see a slightly different effective potential than muon and tau neutrinos
  - This modifies the evolution of flavour states in matter

#### Matter effects

- For uniform matter density, these effects can be included by replacing vacuum oscillation parameters with effective "matter parameters"
  - $\theta_{ij} \to \theta_{ij}^{(m)}(E)$  and  $\Delta m_{ij}^2 \to \Delta M_{ij}^2(E)$
  - however, the effective parameters depend on energy
    - and the function connecting them with vacuum values is quite cumbersome
    - see master thesis by Leon Halić: <u>https://essnusb.eu/DocDB/public/ShowDocument?docid=1155</u>

$$P_{\alpha \to \beta}^{(m)} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left({}^{(m)}A_{ij}^{\alpha\beta}(E)\right) \sin^2\frac{\Delta M_{ij}^2(E)\ L}{4E} \pm 2\sum_{i>j} \operatorname{Im}\left({}^{(m)}A_{ij}^{\alpha\beta}(E)\right) \sin\frac{\Delta M_{ij}^2(E)\ L}{4E}$$

• For non-uniform densities it requires numerical calculation of probabilities

#### Matter effects

(L = 540 km)



Matter effects can mimic CP violation!



#### Why 2nd maximum?



#### Why 2nd maximum?



#### Why 2nd maximum? (summary)

The good 
$$\frac{\left(P_{\nu_{\mu} \to \nu_{e}} - P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}\right) @ 2 \text{ osc. max.}}{\left(P_{\nu_{\mu} \to \nu_{e}} - P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}\right) @ 1 \text{ osc. max.}} \sim 2.7$$

In vaccum, this ratio depends only on neutrino mass square differences

- Move 3x further than 1st maximum flux 9x smaller
- Reduce energy 3x cross-section at least 3x smaller

#### The optimal • Depends on the systematic error and beam intensity

- 3x signal at 2nd osc. maximum is less obscured by systematics, but we have less statistics (measured appearance events).
  - If the signal at 2nd maximum is not obscured by larger statistical error, then 2nd maximum is better.
  - Intense beam helps here, as does having larger  $\theta_{\rm 13}$  because  ${\rm P}_{\mu \to e}$  and
    - $P_{\overline{\mu} \to \overline{e}}$  are larger and we get more events.
- With no systematic error, first maximum is better

The bad

• more statistics, even though the effect is smaller.

## ESSnuSB project

How to observe the CP violation in the 2<sup>nd</sup> oscillation maximum



#### Can we afford 2nd maximum?

As it happens, a very intense proton linac is in construction near Lund, Sweden.



### ESS proton linac



- The ESS will be a copious source of spallation neutrons.
- 5 MW average beam power.
- 125 MW peak power.
- 14 Hz repetition rate (2.86 ms pulse duration, 10<sup>15</sup> protons).
- Duty cycle 4%.
- 2.0 GeV kinetic energy protons
  - up to 3.5 GeV with linac upgrades
- >2.7x10<sup>23</sup> p.o.t/year.

First operation of the linac in 2023.

#### 450 mg of protons/year at 95% speed of light!





#### Ungrades to ESS



#### Ungrades to ESS



#### Upgrades to ESS





#### ESSvSB v energy distribution (after optimisation)

Flux at 100 km (positive polarity)



- almost pure  $\nu_{\mu}$  beam
- small  $v_e$ contamination which could be used to measure  $v_e$  crosssections in a near detector

|                        | Positive                          |       | Negative                         |      |
|------------------------|-----------------------------------|-------|----------------------------------|------|
|                        | $N_{ m v}\left(10^{10}/m^2 ight)$ | %     | $N_{v}\left(10^{10}/m^{2} ight)$ | %    |
| νμ                     | 743                               | 97.4  | 13.7                             | 3.3  |
| $\overline{\nu}_{\mu}$ | 14.5                              | 1.9   | 397                              | 95.9 |
| ve                     | 5.2                               | 0.7   | 0.7                              | 0.02 |
| $\overline{\nu}_e$     | 0.01                              | 0.002 | 2.7                              | 0.7  |

Flux at 100 km (negative polarity)



at 100 km from the target and per year (in absence of oscillations)

#### ESSvSB v energy distribution (after optimisation)



- almost pure  $\nu_{\mu}$  beam
- small  $v_e$ contamination which could be used to measure  $v_e$  crosssections in a near detector

|                        | Positive                         |       | Negative                         |      |
|------------------------|----------------------------------|-------|----------------------------------|------|
|                        | $N_{\nu}\left(10^{10}/m^2 ight)$ | %     | $N_{\nu}\left(10^{10}/m^2 ight)$ | %    |
| νμ                     | 743                              | 97.4  | 13.7                             | 3.3  |
| $\overline{\nu}_{\mu}$ | 14.5                             | 1.9   | 397                              | 95.9 |
| ve                     | 5.2                              | 0.7   | 0.7                              | 0.02 |
| $\overline{\nu}_{e}$   | 0.01                             | 0.002 | 2.7                              | 0.7  |

at 100 km from the target and per year (in absence of oscillations)











## Far detector position

#### Selected baseline:

 Zinkgruvan mine, 340 km from the source, partly covernig 1<sup>st</sup> and 2<sup>nd</sup> maximum

#### Alternative (not selected)

 Garpenberg mine, 540 km from the neutrino source, corresponding to 2nd oscillation maximum.



### Far detector



#### Far detectors



#### Design

- 2 x 270 kt fiducial volume (~20xSuperK)
- Readout: 2 x 38k 20" PMTs
- 30% optical coverage
  - design here for 40% with a caveat that <sup>1</sup>/<sub>4</sub> PMTs will not be installed

Can also be used for other purposes:

- Proton decay
- Astroparticles
- Galactic SN v
- Diffuse supernova neutrino background
- Solar Neutrinos
- Atmospheric Neutrinos

#### Zinkgruvan mine



Potential location in Site 2



**Site 2** is considered as best considering access to main transport infrastructure and located in an area less disturbed by mining activities

#### Improvements on sensitivity

- New detector response optimized for ESSnuSB flux
- Genetic Algorithm for Target Station optimisation ٠ EFFICIENCY V<sub>e</sub>CC nu\_e\_cc-eff\_vs\_nue nu e cc-eff vs nue Selection efficiency 17525 Entries 0.7446 Mean 0.5 0.8 Std Dev 0.3915 ╙<sub>╋╋</sub>╋╋╋</sub> 0.7 0.4 0.6 Efficiency 0.3 0.5 0.4 0.2 **MEMPHYS WC detector** 0.3 0.2 Optimized reconstruction algorithm 0.1 Phys. Rev. ST Accel. Beams 16, 061001 (2013) at Far Detector 0.1 200 600 800 1000 1200 1400 1600 0 400 1.4 E<sub>v</sub> / GeV 0.8 1.2 0.2 0.4 0.6 Nominal Energy









## Updated physics performance (assumptions)

#### • Distance from neutrino source (baseline)

- 540 km (Garpenberg)
- 360 km (Zinkgruvan)
- Experiment run time
  - 5 years neutrino mode, 5 years anti-neutrino mode

#### Assumed systematic error

- 5 % on signal normalization
- 10 % on background normalization

#### • For more information see: <a href="mailto:arXiv:2107.07585">arXiv:2107.07585</a>

## Updated physics performance (sensitivity)



From: <u>arXiv:2107.07585</u>

## Updated physics performance (resolution and hierarchy)



From: arXiv:2107.07585

#### ESSvSB at the European level

• A H2020 EU Design Study (Call INFRADEV-01-2017)



- **Title of Proposal**: Discovery and measurement of leptonic CP violation using an intensive neutrino Super Beam generated with the exceptionally powerful ESS linear accelerator
- Duration: 4 years
- Total cost: 4.7 M€
- Requested budget: 3 M€
- 15 participating institutes from
   11 European countries including CERN and ESS
- 6 Work Packages





#### Possible ESSvSB schedule

(2<sup>nd</sup> generation neutrino Super Beam)



#### ESSvSB and (R&D) synergies



Super Beam

# **Neutrino Factory Muon Collider**

#### ESSnuSB movies

- <u>https://www.youtube.com/watch?v=PwzNzLQh-Dw</u>
- <u>https://www.youtube.com/watch?v=qAnvft0nAlg</u>

 Not directly related, but interesting pitch for ESS from 10 years ago: <u>https://www.youtube.com/watch?v=KG3Upzc3NGY</u>



#### Conclusions

- ESSnuSB aims to observe CP violation in neutrino oscillations at the 2nd oscillation maximum using 538 kt WC detector
  - Recent optimizations predict that in 10 years of data taking ESSnuSB will be able to
    - reach 5  $\sigma$  over 75% of  $\delta_{\text{CP}}$  range
    - reach  $\delta_{\text{CP}}$  resolution of less than  $8^\circ$
    - determine neutrino mass hierarchy
- ESS linac will be most powerful proton accelerator in the world
  - can be used to generate intense neutrino beam to go to 2nd maximum
  - will start operation by 2023, decision on neutrino programme pending
  - proposed modifications would allow a **rich additional physics** programme at ESS
    - muon physics, DAR experiments, short neutron pulses, ...
- Large far detectors can also be used for rich astroparticle physics programme
- ESSnuSB EU-H2020 Design Study support this project

## The end

## Expected appearance events at FD

|            | Channel                                                                           | L = 540  km    | L = 360  km    |
|------------|-----------------------------------------------------------------------------------|----------------|----------------|
| Signal     | $ \nu_{\mu} \rightarrow \nu_{e} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) $   | 292.77 (70.04) | 557.52(118.80) |
|            | $ u_{\mu} \rightarrow \nu_{\mu} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}) $ | 20.41 (4.41)   | 68.12(13.81)   |
|            | $ u_e \to \nu_e \ (\bar{\nu}_e \to \bar{\nu}_e) $                                 | 133.06(25.13)  | 298.28(57.13)  |
|            | $\bar{\nu}_e  ightarrow \bar{\nu}_e \ (\nu_e  ightarrow \nu_e)$                   | 0.08(0.92)     | 0.20 (2.10)    |
|            | $\nu_{\mu} \text{ NC } (\bar{\nu}_{\mu} \text{ NC})$                              | 14.14(2.27)    | 31.82(5.11)    |
| Background | $\bar{\nu}_{\mu} \to \bar{\nu}_e \ (\nu_{\mu} \to \nu_e)$                         | 2.31(5.63)     | 3.99(11.69)    |
|            | $ \nu_e \to \nu_\mu \ (\bar{\nu}_e \to \bar{\nu}_\mu) $                           | 0.04 (-)       | 0.08 (-)       |
|            | $\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \ (\nu_{\mu} \to \nu_{\mu})$                 | 0.14(0.49)     | 0.45(1.26)     |
|            | $\bar{\nu}_{\mu} \text{ NC } (\nu_{\mu} \text{ NC})$                              | 0.24(0.43)     | 0.54 (0.96)    |
|            | $\nu_e \text{ NC} (\bar{\nu}_e \text{ NC})$                                       | 0.57 (-)       | 1.27 (-)       |

**Table 2:** Signal and background events for the appearance channel corresponding to positive (negative) polarity per year.

From: <u>arXiv:2107.07585</u>

## Expected disappearance events at FD

|            | Channel                                                                             | L = 540  km     | L = 360  km       |
|------------|-------------------------------------------------------------------------------------|-----------------|-------------------|
| Signal     | $ \nu_{\mu} \rightarrow \nu_{\mu} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}) $ | 3077.56(603.68) | 7118.58 (1481.54) |
|            | $ u_e \to \nu_e \ (\bar{\nu}_e \to \bar{\nu}_e) $                                   | 13.42(0.07)     | 29.45 (0.16)      |
|            | $\nu_{\mu} \text{ NC } (\bar{\nu}_{\mu} \text{ NC})$                                | 38.41 (5.92)    | 86.43(13.32)      |
|            | $ u_{\mu} \rightarrow \nu_e \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e) $           | 11.67 (0.031)   | $35.71 \ (0.07)$  |
|            | $ u_e \to  u_\mu \ (\bar{ u}_e \to \bar{ u}_\mu) $                                  | 2.86(0.63)      | 7.47(1.17)        |
| Background | $\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \ (\nu_{\mu} \to \nu_{\mu})$                   | 25.44(67.83)    | 52.22(131.05)     |
|            | $\nu_e \text{ NC} (\bar{\nu}_e \text{ NC})$                                         | 0.57 (0.10)     | 1.27 (0.23)       |
|            | $\bar{\nu}_{\mu} \text{ NC } (\nu_{\mu} \text{ NC})$                                | 0.50 (1.06)     | 1.12(2.37)        |
|            | $\bar{ u}_{\mu}  ightarrow \bar{ u}_e \ ( u_{\mu}  ightarrow  u_e)$                 | - (0.30)        | - (1.07)          |
|            | $\bar{\nu}_e  ightarrow \bar{\nu}_e \ (\nu_e  ightarrow \nu_e)$                     | - (0.12)        | - (0.28)          |

From: <u>arXiv:2107.07585</u>



**Figure 3:** Appearance channel event spectrum vs reconstructed energy. The upper panels are for the baseline option of 540 km and the lower panels are for the baseline option of 360 km. Note the difference in scales between upper and lower panels.



Figure 4: Disappearance channel event spectrum vs reconstructed energy. The upper panels are for the baseline option of 540 km and the lower panels are for the baseline option of 360 km. Note the difference in scales between upper and lower panels.

#### Efficiencies at FD



From the poster by Olga Zormpa

#### Absolute FD resolutions



#### Migration matrices at FD





