Classical CPU tools training at CERN

Performance Libraries
Intel® oneAPI| Threading Building Blocks
i Changes from previous versions

Aleksei Fedotov, Software Development Engineer at DSE PRE, Intel

intel.

Agenda

» Revamp of the Intel® Threading Building Blocks (TBB)

* Motivation of the Revamp

= What is Intel® oneAPI Threading Building Blocks (oneTBB)?
= How it Differs from Intel® Threading Building Blocks (TBB)
= Migration from TBB to oneTBB

= Conclusion

Classical CPU tools training at CERN

intel.

Revamp of Intel® Threading Building Blocks (TBB)

» The classic Intel® Threading Building Blocks (TBB) library had been
revamped into Intel® oneAPI Threading Building Blocks (oneTBB)

* The latest version of the TBB library before the revamp is TBB
2020.3

* oneTBB is not binary compatible with TBB

= Among other things, name of the library had been changed to reflect
its inclusion into Intel® oneAPI Toolkits

* Its official name now is Intel® oneTBB Threading Building Blocks (oneTBB)

e [t can also be downloaded standalone

Classical CPU tools training at CERN intel.

Motivation of the Library Revamp

» Compliance with the latest C++ standards
» [Improve the usability and simplicity of the library
» Deprecation and eventual removal of legacy TBB features

Classical CPU tools training at CERN intel.

Intel® oneAPI| Threading Building Blocks
(oneTBB)

= A portable C++ library for parallel programming

= Supports multiple platforms (some of them by community), e.g., x86,
ARM, MIPS and others

= Distributed:
* via open-source project at GitHub (https://github.com/oneapi-src/oneTBB)

* as part of Intel oneAPI Base Toolkit
* via package managers like apt and yum

* via native channels like nuget.org and anaconda.org

= Qualified in accordance with ISO 26262 for Functional Safety and
distributed to Mobileye

Classical CPU tools training at CERN intel.

https://github.com/oneapi-src/oneTBB

) GitHub - oneapi-src/oneTBB: on: X

<« C (0 @& gjthub.com/oneapi-src/oneTBB e % B a

® Python 0.9% SWIG 0.1%
‘= README.md ® Starlark 0.1%

oneAPI Threading Building Blocks

oneTBB is a flexible C++ library that simplifies the work of adding parallelism to complex applications, even if you
are not a threading expert.

The library lets you easily write parallel programs that take full advantage of the multi-core performance. Such
programs are portable, composable and have a future-proof scalability. oneTBB provides you with functions,
interfaces, and classes to parallelize and scale the code. All you have to do is to use the templates.

The library differs from typical threading packages in the following ways:

* oneTBB enables you to specify logical parallelism instead of threads.
* oneTBB targets threading for performance.

* oneTBB is compatible with other threading packages.

e oneTBB emphasizes scalable, data parallel programming.

® oneTBB relies on generic programming.
Refer to oneTBB examples and samples to see how you can use the library.

oneTBB is a part of oneAPl. The current branch implements version 1.1 of oneAPI Specification.
Release Information
Here are Release Notes and System Requirements.

Documentation

* oneTBB Specification
* oneTBB Developer Guide and Reference

—
]

Migrating from TBB to oneTBB]
e README for the CMake build system
Basic support for the Bazel build system

e oneTBB Discussions

Installation

See Installation from Sources to learn how to install oneTBB.

Classical CPU tools training at CERN intel.

Intel® oneAPI Threading Building Blocks (oneTBB)

Parallel Execution Interfaces

Generic
Flow Graph Parallel
Patterns

Task Scheduler

Handle Task arenas

Task Group

Global
Control

Interfaces Independent of Execution Model

Hash Tables

Concurrent Containers

Vectors

Scalable Allocator

Memory Allocation

Cache Aligned
Allocator

Primitives

Primitives and Utilities

Synchronization Thread Local

Storage

Classical CPU tools training at CERN

intel.

7

Functionality Removed in oneTBB

(Pre C++11 Compatibility AP

)

Deprecated/removed TBB functionality Replacement
tbb::atomic std::atomic
tbb:flow:tuple (incl. helper classes) std:tuple
tbb::mutex, tbb::critical section (incl. tbb:improper lock) | std:mutex

tbb:recursive mutex

std::recursive mutex

tbb::hash (incl. tbb::hasher)

std::hash

tbb::tbb_thread / std:ithread / std::this_thread

std:ithread / std::this_thread with possible minimal

changes related to std::chrono

std:lock guard / std::unique_lock (incl. helper classes)

Minimal changes related to std::chrono might be required

std::condition_variable (incl. std::cv_status, std:timeout,

std::no timeout)

Minimal changes related to std::chrono might be required

tbb:aligned space

std::aligned storage

tbb:tbb_exception / tbb::captured_exception /

tbb::movable exception

No more needed due to TBB exact exception propagation

Classical CPU tools training at CERN

intel.

8

Compatibility with Microsoft* Parallel Patterns Library

(PPL)

Deprecated/removed TBB functionality

Replacement

Concurrency::critical section

std::mutex

Concurrency::reader_writer_lock (incl.
Concurrency:iimproper_lock)

std::shared _mutex

Concurrency:parallel_invoke

tbb::parallel_invoke

Concurrency::parallel for (first, last, f)

tbb:parallel_for (first, last, f)

Concurrency::parallel_for_each

tbb::parallel for each

Concurrency::task_group (incl. helper classes)

tbb::itask_group

Concurrency::structured_task_group (incl. helper
classes)

tbb::task_group

Classical CPU tools training at CERN

intel.

9

Other Functionality

Deprecated/removed TBB functionality

Replacement

Task API (tbb::task, tbb::empty_task, tbb:task_list and
related functions)

No direct replacement, the majority use cases can be covered with
tbb:task group, tbb:flow::graph. Task priorities can be covered
with Flow graph node priorities and static arena-level priorities.

tbb:task scheduler_init

tbb:task arena, tbb:global control, task_scheduler_handle

tbb:pipeline (incl. tbb:filter, tbb:thread_bound_filter)

tbb::parallel_pipeline, tbb::flow_async_node, resumable tasks

tbb:flow::sender/receiver/continue_receiver

Remain as unspecified base types for flow graph classes

Allocator template parameter for the flow graph nodes

No replacementis planned

tbb:flow:async_msg, tbb:flow::streaming_node,
tbb:flow::opencl_node

No replacementis planned. To interact with
asynchronous/heterogeneous activity use tbb:flow:async_node or
resumable tasks

(preview) tbb::serial::parallel_for

Limit the number of threads to 1 with task_arena or global_control

(preview) runtime_loader (aka tbbproxy library)

No replacement is planned

tbb:structured_task _group (incl. helper classes)

tbb: :task_group

tbb:parallel_do

tbb::parallel_for_each

tbb:flow::source node

tbb:flow:input_node

tbb:reader writer_lock

std::shared_mutex

Classical CPU tools training at CERN

intel.

10

Migration to one BB

» Dedicated page that helps in migrating
* https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide.html

* Regularly populated with new and not yet covered use cases

* Now includes explanations on how to:
« Migrate from tbb:task _scheduler_init
* Migrate from low-level tasking API

e Mix to runtimes

» PDF document describing classic interfaces to replace with
(https://www.intel.com/content/www/us/en/developer/articles/technical/t

bb-revamp.html)

Classical CPU tools training at CERN intel. B

https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide.html
https://www.intel.com/content/www/us/en/developer/articles/technical/tbb-revamp.html

Example 1: Spawning of Individual Tasks
Using classic TBB Task API

#include <tbb/task.h>

int main() {
// Assuming RootTask, ChildTaskl, and ChildTask2 are defined.
RootTask& root = *new(tbb::task::allocate root()) RootTask{};
ChildTask1& childl = *new(root.allocate child()) ChildTask1{/*params*/};
ChildTask2& child2 = *new(root.allocate child()) ChildTask2{/*params*/};
root.set ref count(3);
tbb: :task::spawn(childl);
tbb: :task::spawn(child2);

root.wait _for all();

Classical CPU tools training at CERN intel. 12

Example 1: Spawning of Individual Tasks
Using classic TBB Task API

#include <tbb/task.h>

int main() {
// Assuming RootTask, ChildTaskl, and ChildTask2 are defined.

RootTask& root = *new(tbb::task::allocate root()) RootTask{};
ChildTask1& childl = *new(root.allocate child()) ChildTaskl1l{/*params*/};
ChildTask2& child2 = *new(root.allocate child()) ChildTask2{/*params*/};
root.set ref count(3);

tbb: :task: :spawn(childl);

tbb: :task: :spawn(child2);

root.wait _for all();

Classical CPU tools training at CERN intel. 13

Example 1: Spawning of Individual Tasks

Using oneapi:tbb:task group
#include <oneapi/tbb/task _group.h>

int main() {
// Assuming ChildTaskl, and ChildTask2 are defined.
oneapi: :tbb::task group tg;
tg.run(ChildTaskl{/*params*/});
tg.run(ChildTask2{/*params*/});
tg.wait();

Classical CPU tools training at CERN

intel.

Example 1: Spawning of Individual Tasks

Using oneapi:tbb:parallel invoke
#include <oneapi/tbb/parallel invoke.h>

int main() {
// Assuming ChildTaskl, and ChildTask2 are defined.
oneapi: :tbb::parallel_invoke(
ChildTask1{/*params*/},
ChildTask2{/*params*/}

)5

Classical CPU tools training at CERN

intel. s

Example 2: Adding More Work During Task
Execution in Classic TBB

#include <tbb/task.h>
// Assuming necessary entities are defined and implement required interfaces
struct Task : public tbb::task {
Task(tbb::task& root, int i) : m_root(root), m i(i) {}
tbb: :task* execute() override {
// ... do some work for item m i ...
if (add _more parallel work) {
tbb::task& child = *new(m_root.allocate child()) OtherWork;
tbb: :task::spawn(child);
}

return nullptr;

}
/] ..

s

Classical CPU tools training at CERN intel. 16

Example 2: Adding More Work During Task
Execution in Classic TBB

#include <tbb/task.h>
// Assuming necessary entities are defined and implement required interfaces
struct Task : public tbb::task {
Task(tbb::task& root, int i) : m_root(root), m i(i) {}
tbb: :task* execute() override {
// ... do some work for item m i ...
if (add _more parallel work) {
tbb::task& child = *new(m_root.allocate_child()) OtherWork;
tbb: :task: :spawn(child);
}

return nullptr;

}
/] ..

s

Classical CPU tools training at CERN intel. 7

Example 2: Adding More Work During Task
Execution Using oneapi:tbb:parallel for each

#include <vector>
#include <oneapi/tbb/parallel for each.h>

int main() {
std::vector<int> items = { 0, 1, 2, 3, 4, 5, 6, 7 };
oneapi::tbb::parallel for each(
items.begin(), items.end(),
[](int& i, tbb::feeder<int>& feeder) {
// ... do some work for item i ...
if (add_more parallel work)
feeder.add(i);

);
}

Classical CPU tools training at CERN intel. 18

Example 2: Adding More Work During Task
Execution Using oneapi:tbb:task group

#include <vector>
#include <oneapi/tbb/task _group.h>
int main() {
std::vector<int> items = { 0, 1, 2, 3, 4, 5, 6, 7 };
oneapi::tbb::task group tg;
for (std::size t i = 0; 1 < items.size(); ++i) {
tg.run([&1 = items[i], &tg] {

// ... do some work for item i ...
if (add_more parallel work)
tg.run(OtherWork{});
1)
}
tg.wait();

}

Classical CPU tools training at CERN intel. 19

Example 3: Deferred Task Creation
Using Classic TBB

#include <tbb/task.h>

int main() {
// Assuming RootTask, ChildTask, and CallBackTask are defined.
RootTask& root = *new(tbb::task::allocate root()) RootTask{};
ChildTask& child = *new(root.allocate child()) ChildTask{/*params*/};
CallBackTask& cb _task = *new(root.allocate child()) CallBackTask{/*params*/};
root.set ref count(3);
tbb: :task::spawn(child);
register_callback([cb_task&]() { tbb::task::enqueue(cb task); });
root.wait for all();
// Control flow will reach here only after both ChildTask and CallBackTask are
// executed, i.e. after the callback is called

Classical CPU tools training at CERN intel. 20

Example 3: Deferred Task Creation
Using Classic TBB

#include <tbb/task.h>

int main() {
// Assuming RootTask, ChildTask, and CallBackTask are defined.
RootTask& root = *new(tbb::task::allocate root()) RootTask{};
ChildTask& child = *new(root.allocate child()) ChildTask{/*params*/};
CallBackTask& cb_task = *new(root.allocate child()) CallBackTask{/*params*/};
root.set ref count(3);
tbb: :task::spawn(child);
register_callback([cb_task&]() { tbb::task::enqueue(cb_task); });
root.wait for all();
// Control flow will reach here only after both ChildTask and CallBackTask are
// executed, i.e. after the callback is called

Classical CPU tools training at CERN intel. 21

Example 3: Deferred Task Creation
Using oneapi:tbb:task group

#include <oneapi/tbb/task _group.h>
int main(){
oneapi::tbb::task _group tg;
oneapi::tbb::task arena arena;
// Assuming ChildTask and CallBackTask are defined.

auto cb = tg.defer(CallBackTask{/*params*/});
register_callback([&tg, ¢ = std::move(cb), &arena]{ arena.enqueue(c); });

tg.run(ChildTask{/*params*/});

tg.wait();

// Control flow gets here once both ChildTask and CallBackTask are executed
// i.e. after the callback is called

}

Classical CPU tools training at CERN intel. 22

Example 3: Deferred Task Creation
Using oneapi:tbb:task group (alternative)

#include <oneapi/tbb/task _group.h>
int main(){
oneapi::tbb::task _group tg;
// Assuming ChildTask and CallBackTask are defined.

auto cb = tg.defer(CallBackTask{/*params*/});
register_callback([&tg, ¢ = std::move(cb)]{ tbb::this_task_arena::enqueue(c); });

tg.run(ChildTask{/*params*/});

tg.wait();

// Control flow gets here once both ChildTask and CallBackTask are executed
// i.e. after the callback is called

Classical CPU tools training at CERN intel. 23

Other Changes: New Community Preview

Features
» Task arena interface extension to support Hybrid CPUs

= Collaborative call once

» Extended the high-level task API to simplify migration from TBB to
onelBB

» Task scheduler handle to support waiting of worker thread
termination

» Added heterogeneous lookup, erase, insert in concurrent hash map

= etC.

Classical CPU tools training at CERN intel. 24

Other Changes: New Features

= Defer execution of a task in the task group

= Specify arbitrary task_group context for the task_group

» Task arena interface extension to specify priority of the arena
= Support of latest C++ standards and compilers

= Support of Address Sanitizer and Thread Sanitizer

= Several community preview features are now officially supported
» Concurrent ordered containers
» Task arena interface extension for NUMA
* Flow Graph API to support relative priorities for functional nodes
* Resumable tasks

Classical CPU tools training at CERN

intel.

25

Conclusion

= oneTBB is a revamped version of TBB
* Included into Intel® oneAPI Toolkits

* Migration Guide (https://oneapi-
src.github.io/oneTBB/main/tbb_userguide/Migration_Guide.html)

* oneTBB team can help in migration!

= Available on GitHub (https://github.com/oneapi-src/oneTBB)

* Anyone can open an Issue, suggest a Pull Request
» [ncludes CMake support and is included into popular package managers

» Backward compatible with previous releases of oneTBB

Classical CPU tools training at CERN intel. 26

https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide.html
https://github.com/oneapi-src/oneTBB

