
Intel® Intel® oneAPI Math Kernel Library
(oneMKL)

Gennady.Fedorov@intel.com

Intel® oneAPI Math Kernel Library 2

Intel® oneAPI Base Toolkit

Core set of frequently used tools and libraries for
developing high-performance applications across
diverse architectures—CPU, GPU, FPGA.

Who Uses It?

▪ A broad range of developers across industries

▪ Add-on toolkit users because this is the base for all toolkits

Top Features/Benefits

▪ Data Parallel C++ (DPC++) compiler, library, and analysis tools

▪ DPC++ Compatibility tool helps migrate existing CUDA code

▪ Python distribution includes accelerated scikit-learn, NumPy, SciPy
libraries

▪ Optimized performance libraries for threading, math, data analytics,
deep learning, and video/image/signal processing

API-based
Programming

Direct
Programming

Intel® oneAPI DPC++
Compiler

Intel® DPC++
Compatibility Tool

Intel® Distribution
for Python*

Analysis &
Debug Tools

Intel® oneAPI DPC++
Library

Intel® oneAPI
Math Kernel

Library

Intel® oneAPI
Data Analytics Library

Intel® oneAPI
Threading Building

Blocks

Intel® oneAPI Video
Processing Library

Intel® VTune™
Profiler

Intel® Advisor

GDB*

Intel® oneAPI Base Toolkit

Intel® oneAPI
Collective Comms.

Library

Intel® oneAPI
Deep Neural

Network Library

Intel® Integrated
Performance Primitives

Intel® FPGA Add-on
for oneAPI Base

Toolkit

Intel® oneAPI Math Kernel Library 3

Intel® oneAPI Math Kernel Library (oneMKL)
Features
1. Language support for DPC++ and Intel® C & Fortran compilers.

2. Great performance with minimal effort.

3. Full support for CPUs and select support for Intel® Processor Graphics Gen9, Gen12, and discrete Intel®
GPUs.

4. Speeds computations for scientific, engineering, and financial applications by providing highly
optimized, threaded, and vectorized math functions.

5. Provides key functionality for dense and sparse linear algebra (BLAS, LAPACK, MKL PARDISO), FFTs,
vector math, summary statistics, splines, and more.

6. Dispatches optimized code for each processor automatically without the need to branch code.

7. Optimized for single-core vectorization and cache utilization.

8. Automatic parallelism for multi-core CPUs, GPUs, and scales from core to clusters.

9. Available at no cost and royalty-free.

10. Available: Intel® oneAPI Base Toolkit, standalone. IA32 is separated.

Intel® oneAPI Math Kernel Library 4

Intel® oneAPI Math Kernel Library (oneMKL)

Linear Algebra

BLAS

LAPACK

ScaLAPACK

Sparse BLAS

Graph

PARDISO/Direct
Sparse Solver

Cluster Sparse
Solver

FFTs

Multi-

dimensional

FFTW
interfaces

Cluster FFT

Vector RNGs

Engines

Distributions

Summary Statistics

Kurtosis

Variation
coefficient

Min/max

Order Statistics

Variance-
covariance

Vector Math

Trigonometric

Hyperbolic

Exponential

Log

Power

Root

And More

Splines

Interpolation

Trust Region

Fast Poisson
Solver

Intel® oneAPI Math Kernel Library 5

Intel® oneAPI Math Kernel Library (oneMKL)

Linear Algebra

BLAS

LAPACK

ScaLAPACK

Sparse BLAS

Graph

PARDISO/Direct
Sparse Solver

Cluster Sparse
Solver

FFTs

Multi-

dimensional

FFTW
interfaces

Cluster FFT

Vector RNGs

Engines

Distributions

Summary Statistics

Kurtosis

Variation
coefficient

Min/max

Order Statistics

Variance-
covariance

Vector Math

Trigonometric

Hyperbolic

Exponential

Log

Power

Root

And More

Splines

Interpolation

Trust Region

Fast Poisson
Solver

Beta Intel® Processor Graphics
Gen9/Gen12 support

Limited - Beta Intel® Processor Graphics
Gen9/Gen12 support (see release notes) CPU C/Fortran support

Intel® oneAPI Math Kernel Library 6

Intel® oneAPI MKL, Domain areas

1: Subset of the full functionality available.
Refer to the DPC++ developer reference for
full list of DPC++ functionality supported.

2: Subset of the full functionality available.
For the list of functionality, refer to the
developer reference (C and Fortran)

Domain CPU APIs Intel GPU APIs

DPC++ C Fortran DPC++ C OpenMP*

Offload

Fortran OpenMP*

Offload

BLAS and BLAS-

like Extensions
Yes Yes Yes Yes Yes Yes

LAPACK and

LAPACK-like

Extensions
Yes1 Yes Yes Yes1 Yes2 Yes2

ScaLAPACK No Yes Yes No No No

Vector Math Yes Yes Yes Yes Yes Yes

Vector Statistics

(Random Number

Generators)
Yes Yes Yes Yes1 Yes2 Yes2

Vector Statistics

(Summary

Statistics)
Yes1 Yes Yes Yes1 Yes2 Yes2

Data Fitting No Yes Yes No No No

FFT/DFT Yes Yes Yes Yes Yes Yes

Sparse BLAS Yes1 Yes Yes Yes1 Yes2 No

Sparse Solvers No Yes Yes No No No

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-mkl-dpcpp-developer-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/appendix-f-onemkl-functionality.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/appendix-f-onemkl-functionality.html

Intel® oneAPI Math Kernel Library 7

BLAS_64/Lapack_64 API Extensions

▪ Using BLAS and LAPACK with the 32-bit and 64-bit interface (lp64 /
ilp64) at the same time

▪ BLAS_64 and LAPACK_64 - NetLib interfaces

▪ Declaration: mkl_blas_64.h, mkl_lapack.h,

▪ Limitations :

• Intel64

• C API

• BLAS extensions - mkl_trans.h (?imatcopy,?omatcopy)

• LAPACKE (C API for LAPACK)

• CPU only

Intel® oneAPI Math Kernel Library 8

BLAS_64/Lapack_64 API Extensions, cont.

▪ BLAS:

• void sgemm(const char *transa, const char *transb, const MKL_INT *m, const MKL_INT *n, const MKL_INT *k, const

float *alpha, const float *a, const MKL_INT *lda, const float *b, const MKL_INT *ldb, const float *beta, float *c, const
MKL_INT *ldc) NOTHROW;

• void sgemm_64(const char *trans, const MKL_INT64 *m, const MKL_INT64 *n, const float *alpha, const float *a,

const MKL_INT64 *lda, const float *x, const MKL_INT64 *incx, const float *beta, float *y, const MKL_INT64 *incy)
NOTHROW;

▪ LAPACK:

• void sgetrf(const MKL_INT* m, const MKL_INT* n, float* a, const MKL_INT* lda, MKL_INT* ipiv,
MKL_INT* info) NOTHROW;

• void sgetrf_64(const MKL_INT64* m, const MKL_INT64 * n, float* a, const MKL_INT64 * lda,
MKL_INT64 * ipiv, MKL_INT64 * info) NOTHROW;

Intel® oneAPI Math Kernel Library 9

Intel® oneAPI Math Kernel Library, RNG

Linear Algebra

BLAS

LAPACK

ScaLAPACK

Sparse BLAS

Graph

PARDISO/Direct
Sparse Solver

Cluster Sparse
Solver

FFTs

Multi-

dimensional

FFTW
interfaces

Cluster FFT

Vector RNGs

Engines

Distributions

Summary Statistics

Kurtosis

Variation
coefficient

Min/max

Order Statistics

Variance-
covariance

Vector Math

Trigonometric

Hyperbolic

Exponential

Log

Power

Root

And More

Splines

Interpolation

Trust Region

Fast Poisson
Solver

Intel® oneAPI Math Kernel Library 10

Random Number Generators (RNG) , Intro

• Intel® MKL VS provides a set of commonly used continuous and discrete
distributions

▪ All distributions are based on the highly optimized Basic Random
Number Generators and Vector Mathematics

Distribution Generators

Continuous Discrete

Uniform Cauchy Uniform Binomial

Gaussian Rayleigh UniformBits Hypergeometric

GaussianMV Lognormal UniformBits32 Poisson

Exponential Gumbel UniformBits64 PoissonV

Laplace Gamma Bernoulli NegBinomial

Weibull Beta Geometric Multinomial

ChiSquare

Basic Random Number Generators

Pseudorandom Quasi-
random

Non-deterministic

Multiplicative Congruential
59-bit

Multiplicative Congruential
31-bit Sobol

RDRAND based (HW
dependent)

Multiple Recursive Wichmann-Hill Niederreiter

Mersenne Twister 19937 Mersenne Twister 2203

SIMD-oriented Fast
Mersenne Twister 19937

Philox4x32-10 Counter-
Based

ARS-5 Counter-Based (HW
dependent) R250 Shift-Register

Intel® oneAPI Math Kernel Library 11

RNG – API & Usage Model

• A typical algorithm for VS random number generation is as follows:

▪ Create and initialize stream

▪ Call RNG and process the output

▪ Delete the stream

Step Step description

RNG stream
initialization

vslNewStream (&stream, VSL_BRNG_MT2203, 777);

Random number
generation

vsRngUniform(VSL_RNG_METHOD_UNIFORM_STD, stream, N, r, a, b);

RNG stream
de-initialization

vslDeleteStream(&stream);

Distribution type Generation method Generation parameters (Used RNG
stream, number of elements, etc.)

BRNG Type Seed

Basic RNG

Distribution
Generator

Output sequence
010010110011101000...

Initialization
parameters (seed)

Distribution
parameters

Intel® oneAPI Math Kernel Library 12

RNG - Parallel Computing

• Basic requirements for random number streams are their mutual independence
and lack of inter-correlation

• Independent streams can be generated by
the following VS methods:

▪ BRNG set

▪ Skip-ahead

▪ Leapfrog

Parallel Random Number Generation

...

Output
sub-sequence 1

0100101...

Output
sub-sequence 2

1110010...

Output
sub-sequence N

1100111...

Output
sub-sequence 3

0110011...

Stream 1 Stream 2 Stream 3 Stream N

Intel® oneAPI Math Kernel Library 13

RNG - Parallel Computing. BRNG Set

• The sequence of random numbers can be generated by the set of mutually
“independent” streams

▪ Wichmann-Hill contains a set of 273 combined multiplicative congruential
generators

▪ MT2203 contains a set of 6024 Mersenne Twister pseudorandom number
generators

• The produced sequences are independent according to the spectral test

Intel® oneAPI Math Kernel Library 14

RNG - Parallel Computing. Skip-Ahead

• The original sequence is split into 𝑘 non-overlapping blocks

▪ where 𝑘 - the number of independent streams

• Each of the streams generates random numbers only from the
corresponding block

10 11 12 13 14 16 17 18 19 20 213 4 5 6 71 2 8 9 15

1st node stream

3rd node stream

2nd node stream
At the 1st node the stream contains 1, 2, 3, 4, 5, 6, 7.
At the 2nd node the stream contains 8, 9, 10, 11, 12, 13, 14.
At the 3rd node the stream contains 15, 16, 17, 18, 19, 20, 21.

Intel® oneAPI Math Kernel Library 15

RNG - Parallel Computing. Leapfrog

• The original sequence is split into 𝑘 disjoint sub-sequences

▪ where 𝑘 - the number of independent streams

• Each of the streams generates random numbers only from the corresponding
subsequence

1st node stream

3rd node stream

2nd node stream

10 11 12 13 14 16 17 18 19 20 213 4 5 6 71 2 8 9 15

At the 1st node the stream contains 1, 4, 7, 10, 13, 16, 19.
At the 2nd node the stream contains 2, 5, 8, 11, 14, 17, 20.
At the 3rd node the stream contains 3, 6, 9, 12, 15, 18, 21.

Intel® oneAPI Math Kernel Library 16

MKL RNG - Performance

• Performance metric: Cycles-per-element (CPE)

▪ Lower is better

0

1

2

3

4

5

6

7

8

9

MCG31m1 R250 MRG32k3a MCG59 WH SOBOL NIEDERR MT19937 MT2203 SFMT19937 Philox4x32-10 ARS-5

C
P

E

BRNG

Uniform distribution generator performance

Intel® Xeon® Gold 6148 Processor

Single precision Double precision

Intel® oneAPI Math Kernel Library 17

MKL RNG – Performance, cont

Intel® oneAPI Math Kernel Library 18

Intel® oneAPI MKL, RNG, GPU

Intel® oneAPI Math Kernel Library 19

Intel® oneMKL Resources

Intel® oneMKL Product Page https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

Get Started with Intel® oneMKL https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-mkl-for-dpcpp/top.html

Intel® oneMKL Developer Reference https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top.html

Intel® oneMKL Developer Guide https://www.intel.com/content/www/us/en/develop/documentation/onemkl-windows-developer-guide/top.html

Intel® oneMKL Specification https://spec.oneapi.io/versions/latest/elements/oneMKL/source/index.html

Intel® oneMKL Open-Source Interfacehttps://github.com/oneapi-src/oneMKL

Intel® oneMKL Release Notes https://cqpreview.intel.com/content/www/us/en/developer/articles/release-notes/onemkl-release-notes.html

Intel® oneMKL Forum https://community.intel.com/t5/Intel-oneAPI-Math-Kernel-Library/bd-p/oneapi-math-kernel-library

Intel® oneAPI Math Kernel Library 20

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. See backup for configuration details. For more complete information about performance and
benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No
product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement,
as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property
of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

21

Intel® oneAPI Math Kernel Library 22

22

MKL RNG – Non-deterministic Generator

Available since version of MKL v.11.1 and Compiler 13.1

Supported since Intel Ivy Bridge 2012 microarchitecture and later

This is non-deterministic random number generator - aka “True Generator”

• DRNG passed all NIST SP800-22 tests

• Supported by Intel Compiler and MKL

Intel Compiler : Generate random numbers of 16/32/64 bit wide random integers. These
intrinsics are mapped to the hardware instruction RDRAND

Examples:

extern int _rdrand16_step(unsigned short *random_val);

extern int _rdrand32_step(unsigned int *random_val);

extern int _rdrand64_step(unsigned __int64 *random_val);

Returned value: 1 (if the hardware returns random value) and 0 – if failed

