S

—

Intel® Inspector

Memory and Thread Debugger

CERN, March 3rd 2022
Heinrich Bockhorst, Intel

Agenda

* Intro to Intel® Inspector XE
* Analysis workflow

« Command line interface
 Memory problem analysis
* Threading problem analysis
* Persistent memory analysis
* Documentation

Software and Advanced Technology Group | SATG

Motivation for Inspector

Memory Errors Threading Errors

Timeline
|
Qe

main (7652)
thread_video (0444
threadstartex (8558)

Problems
I0 e Problem %o

P1 S Mismatched allocation... fin
P2 @ Invalid memory access fin
Pz @ Mernory leak fin

 Data Races
* Deadlocks
e Cross Stack References

* Invalid Accesses
 Memory Leaks
* Uninitialized Memory Accesses

Multi-threading problems

* Hardto reproduce,
. Difficult to debug » Let the tool do it for you
* Expensive to fix

Software and Advanced Technology Group | SATG

Workflow: Dynamic Analysis

One-time / Optional

Choose /Create Configure
project project

Set up

Run Configure
dynamic dynamic
analysis analysis

. Launch analysis in
Rebuild Eonjunction with debugger to

e

application stop at problem(s) of interest

v 1

Collect resuit

A4

Investigate result

Interpret Examine
result data/ application
Resolve issue state

3/3/2022

Software and Advanced Technology Group | SATG

Select analysis and Start

Configure Analysis Type

1 A Analysis Type

&

Memory Error Analysis

-

Vs

1. Select Analysis
Type

INTEL INSPEGTOR

[

2%-20x Detect Leaks
Yo
\OE] 10x-40x Detect Memory Problems j
B o ox-80x Locate Memory Problems nl[m ko]
Analysis Time Overhead Memory Overhead 2. Click Start Srowth Tracking
Locate Memory Problems Copy o Measure Growth

Widest scope memory error analysis type. Maximizes the load on the system and
the time and resources required to perform analysis; however, detects the widest
set of errors and provides context and maximum detail for those errors. Press F1
for more details.

+ Detect invalid memory accesses

Analyze stack accesses
v Detect memory leaks upon application exit
+ Enable interactive memory growth detection

+ Enable on-demand memory leak detection

Software and Advanced Technology Group | SATG

%, Reset Leak Tracking

«F Find Leaks

User Interface Overview

Locate Deadlocks and Data Races INTEL INSPECTOR
© @ Target A Analysis Type [Collection Log § @ Summary Filters let you
Problems % § Filters - fOCUS On a
ID & 2 Type Sourc.es Modules _ State Type | { mOdU|e, or
»P1 Data race memissues_omp.cpp Becee7el0398e29e; memissues_omp_exe R New Data race 1 item:
errortype, or
¢ Source g t th
SeleCt a ‘ e ~sues_omp.cpp 1 item: JUS e new
problem Module errors or...
S;EBt BECE??EID353029& litcnﬂs}
memissues_omp_exe 1 item(s)
State
.. = -
11 4 of 4 &l Code Locations: Data race PrObIem S_tates'
Description source Function Madule Variable Ner NOt leedl
Write memissues_omp.cpp:13 _Z12parallel_sumPjmPm.extracted S8ecee7el0398e29¢ 0x3842800 leed, Conflrmed,
//#pragna omp atomic gecee7el@398e29e! Z12parallel sumPjmPm.extrad Pd()t a F)r()k)learT]l
//#pragma omp critical
(::()(j(} - *gutput += input[i]; //This is a race [)GBfEBFFEB(j,
SI_‘\IppetS //std::cout << "Hi from thread " << omp get thread num{) << "\n" RegreSSlon
d|5p|ayed Read memissues_omp.cpp:13 _Z12parallel_sumPjmPm.extracted B8ecee7el0398e29%e 0x3842800
for //#pragma omp atomic 8ecee7elo398e29e! ZlZparallel sumPjmPm.extracted
| Cj f/#pragma omp critical
se EE(:tEE ~ *putput += input[i]; //This is a race
problem

//std::cout << "Hi from thread " << omp get thread num{) =< "\n"

Software and Advanced Technology Group | SATG

Source & Call Stack details

Data race INTEL INSPECTOR

1 @ Target A Analysis Type [4 Collection Log ,‘ @ Summary f $» Sources b

| Call Stack
8ecee7e10398e29¢e!_Z12parallel_sumPjmPm.extrs

#pragma omp parallel for

Source code for(size t i=0;i<size;i++) I
i Tio {
gcaflonzf 11 //#pragma omp atomic
ISplayead tor 12 //#pragma omp critical
selected 13 ‘output 4= input[i]; //This is a race
problem 14

15 //std::cout << "Hi from thread " << omp get thread num() << "\n";

Call
Stacks

Read - Thread TBB Worker Thread (80080) (aecea701039m9¢l znparnilal :mnPjIan.emmd memissues omp.cpp°13)

\memissues_omp. cpp| Disassembly (Becee7e10398e29e10x193) i Call Stack -
N #pragma omp parallel for !8ecee7e10398829e' ZlZparaIleI SuzaPMPmM. extre
£ for(size t i=0;i<size;i++)

10 { |

11 //#pragma omp atomic

12 //#pragma omp critical

(13 *output += input[i]; //This is a race

14

15 //std::cout << "Hi from thread " << omp get thread num() << "\n";

16 }

17 }

Software and Advanced Technology Group | SATG

Command Line Interface |

= Start analysis
o Memory: inspxe-cl -c mi3 -- <app> [app_args]
o Threading: inspxe-cl-cti3--<app>lapp_args]

= View results
* inspxe-cl-report=problems -report-all
« Toopenresultin GUI, type:
inspxe-gui <result folder>

Software and Advanced Technology Group | SATG

Command Line Interface |l

* Help menu:

S inspxe-cl —-help
» Export results: create an archive with cached source

$ inspxe-cl -help export

$ inspxe-cl -export -include-source -archive-name <arch name> -r <result>

* Move archive arch name.inspxez tolocal machine with
inspectorinstallation.

Software and Advanced Technology Group | SATG

Inspector and MP|

» TorunlInspectorinan Intel MPljob you may use the “-gtool” flag
* More convenientis the I_MPI_GTOOL environment variable:

$export I MPI GTOOL= “inspxe-cl -c ti3 -r TI3:0"

run your program, as usual, under MPI. The setting will collect data
onrank #0.Use alistofranksor :all for multi rank analysis.

= More information:

Software and Advanced Technology Group | SATG

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/command-reference/mpiexec-hydra/gtool-options.html

Memory problems

Memory leak

* ablock of memory is allocated

* never deallocated

« notreachable (there is no pointer available to
deallocate the block)

« Severity level = (Error)

Memory not deallocated

* ablock of memory is allocated

* never deallocated

« stillreachable at application exit (thereis a
pointer available to deallocate the block).

« Severity level = (Warning)

Memory growth

e ablock of memory is allocated

* notdeallocated, within a specific time
segment during application execution.

« Severity level = (Warning)

3/3/2022

Software and Advanced Technology Group | SATG

// Memory leak

char *pStr = (char*) malloc(512);
return;

// Memory not deallocated

static char *pStr = malloc(512);
return;

// Memory growth

// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

Threading Issues: Data race

CRITICAL_SECTION cs;

// Preparation

int *p = malloc(sizeof(int)); // Allocation Site

*p = 05

InitializeCriticalSection(&cs);

Write -> Wrrite Data Race

Thread #1

Thread #2

*p = 1; // First Write

EnterCriticalSection(&cs);
*p = 2; // Second Write
LeaveCriticalSection(&cs);

Read -> Write Data Race

Thread #1

Thread #2

int x;
x = *p; // Read

EnterCriticalSection(&cs);
*p = 2; // Write
LeaveCriticalSection(&cs);

3/3/2022

Software and Advanced Technology Group | SATG

Deadlock

CRITICAL _SECTION csi;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;

InitializeCriticalSection(&csl); // Allocation Site (csl)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

Thread #1 Thread #2
EnterCriticalSection(&csl); EnterCriticalSection(&cs2);
X++; y++;
EnterCriticalSection(&cs2); EnterCriticalSection(&csl);
y++; X++;
LeaveCriticalSection(&cs2); LeaveCriticalSection(&cs1);
LeaveCriticalSection(&csl); LeaveCriticalSection(&cs2);

Deadlock

1. EnterCriticalSection(&csl); in thread #1

Lock Hierarchy Violation

1. EnterCriticalSection(&csl); in thread #1
2. EnterCriticalSection(&cs2); in thread #]1
3. EnterCriticalSection(&cs?2); in thread #2
4. EnterCriticalSection(&csl); in thread #2

2. EnterCriticalSection(&cs2); in thread #2

3/3/2022

Software and Advanced Technology Group | SATG

Persistent memory analysis

Software and Advanced Technology Group | SATG

Memory Store 1= Memory

Software and Advanced Technology Group | SATG

Persistence

Datais lost if power
switched off

Datais persistent if power
switched off

order

void save_value (uint32_t value, uint8_ t* pmem region)
{
uint8 t* pmem flag
uint32 t* pmem value

pmem region;
(uint32 t*) (pmem region + 256);

*pmem_value value;
*pmem flag = 1;

*pmem_value = value

Store
‘pmem_value’

U cache hierarchy could affect persistence

void load_value (uint32 t value, uint8 t* pmem region)
{
uint8 t* pmem flag
uint32 t* pmem value

pmem region;
(uint32 t*) (pmem region + 256);

if (*pmem_ flag)
printf(“Value = %u”, *pmem value);

‘pmem_flag’

*pmem_flag=1

x86 architecture enforces stores ordering

CPU pipeline

pmem_value

y

pmem_flag

When cache line is evicted from caches hierarchy?
In which order?

Memory Controller

Timeline

v

Software and Advanced Technology Group | SATG

Could be pmem_value then pmem_flag
Could be pmem_flag then pmem_value

—xecution reordering affects data correctness

void save_value (uint32_t value, uint8_ t* pmem region) a A” stores are in order on X86 architecture
{ - 0
* clflushoptis ordered with respect to stores to

uint8 t* pmem flag = pmem region;
uint32 t* pmem value = (uint32 t*) (pmem region + 256); that CaChe“ne

*pmem value = value;
_mm_clflushopt (pmem_value) ;
*pmem flag = 1;
_mm_clflushopt(pmem_flag) ;
_ Potential out of order execution

}
:
mm_clflushopt(pmem_value _ _t ~ T 22 =77 Tt clilushopt takes few more cycles
- 0

mm_clflushopt(pmem_flag)

CPU pipeline

- ‘ pmem_value pmem_flag
N v

Hierarchy of CPU caches

_- Persistence order changed
l pmem_flagthen pmem_value

Memory Controller

Timeline

v

Software and Advanced Technology Group | SATG

Potential PM problem detected by
the tool

* Missing or redundant cache flushes
» Missing store fences

* Storesnotaddedinto atransaction
 Redundant transactions

* Overlapping regions registered in different
transactions

» Qut-of-order stores
* Memory leaks (unused memory)

Software and Advanced Technology Group | SATG

ocumentation

» Collection of documentation (some links do not work!)
https://software.intel.com/en-us/inspector

= Intel Developer Zone (open forum)

s User Guide:

= Persistent Memory:

https://www.intel.com/content/www/us/en/developer/articles/technical/detect-persistent-
memory-programming-errors-with-intel-inspector-persistence-inspector.html

Software and Advanced Technology Group | SATG

https://software.intel.com/en-us/inspector
https://software.intel.com/en-us/forums/intel-inspector
https://www.intel.com/content/www/us/en/develop/documentation/inspector-user-guide-linux/top.html
https://www.intel.com/content/www/us/en/developer/articles/technical/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See configuration disclosure for details.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

Software and Advanced Technology Group | SATG

http://www.intel.com/PerformanceIndex

Integration with debugger

Software and Advanced Technology Group | SATG

Debugger integration

Break into debugger wg 22| Dewectles
* Analysis can stop when it detects a ;z? 10:40fegDetect Memory Proble
problem 200-80x Locate Memory Problems

.)) Analysis Time Overhead
 Useris switched into a standard
debugging session Detect Memory Problems Copy

Medium scope memaory error analysis type. Increases the load on

. * the system and the time and resources required to perform
W| thWS analysis. Press F1 for more details.

» Microsoft* Visual Studio Debugger o =
(V52017 - VSZO]Q) nalyze without debugger

Run an analysis and report all detected problems. Use
to view correctness issues without stopping in the

Linux* debugger to examine them.

¢ gdb @ Enable debugger when problem detected

Run an analysis under the debugger and stop every
time a problem is detected. Use to allow investigation
of every problem detected.

m

Select analysis start location with debugger

Run target application under the debugger with
analysis disabled until you choose to turn on analysis.
Before starting, set a code breakpoint to stop execution
prior to where you want analysis to begin. Sele..

3/3/2022

Software and Advanced Technology Group | SATG

Debug this problem

r009mi2 + X Eyleteels simple_dll.cpp & X ~
® petect Memory Problems Intel Inspector XE 2015

" Analysis Type || B Collection Log

Problems

Type
Memory leak

Invalid memory access mc.cpp MC.exe

View Source

. SMOry access 1
Edit Source vy -

e q

<a Copy to Clipboard
a1 1of1 b Al | Code Loca! Fere =l g
Explain Problem
Description Source Function Module Object Create Problem Report.. (5556)
Write mc.cpp:150 main MC.exe Debug This Problem
148 mc.exe !
145 for (unsigned int i = 0;||mc.exe!| Change 5State >
150 lf:ucal_m;:c:x[i] = 0; mc.exe !l Merge q
151 EERNEL3:~rtooroas
152 return 0; ntdll.dll!RtlRel

Software and Advanced Technology Group | SATG

