
Intel® Advisor
Vectorization and Roofline Analysis
Klaus-Dieter.Oertel@intel.com

Software and Advanced Technology Group (SATG) 2

Offload Modelling

Design offload strategy and
model performance on
GPU.

Intel® Advisor for High Performance Code Design
Rich Set of Capabilities

3Intel ConfidentialOne Intel Software & Architecture (OISA)

Vectorization Analysis

Software and Advanced Technology Group (SATG) 4

4

▪ Faster Vectorization Optimization:

• Vectorize where it will pay off most

• Quickly identify what is blocking vectorization

• Tips for effective vectorization

• Safely force compiler vectorization

• Optimize memory stride

▪ The data and guidance you need:

• Compiler diagnostics +
Performance Data + SIMD efficiency

• Detect problems & recommend fixes

• Loop-Carried Dependency Analysis

• Memory Access Patterns Analysis

Intel® Advisor – Vectorization Advisor
Get breakthrough vectorization performance

Optimize for
AVX-512

with/without
access to
AVX-512
hardware

software.intel.com/advisorPart of oneAPI Base Toolkit

https://software.intel.com/advisor

Software and Advanced Technology Group (SATG) 5

Amdahl’s law

𝑆𝑡𝑜𝑡𝑎𝑙 =
100%

100% − 𝑝 +
𝑝
𝑠𝑝

S = speedup (in parallelized part or total)

P = proportion of execution time that benefits
from parallelization

Example: P=80%, sp=16 [AVX-512] => Stotal=4

Software and Advanced Technology Group (SATG) 6

Amdahl’s law

0

2

4

6

8

10

12

14

16

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

stotal

Software and Advanced Technology Group (SATG) 7

7

Summary View: Plan Your Next Steps
What can I
expect to

gain?

Where do I
start?

Amdahl’s law for
parallelization ==

vectorization

Software and Advanced Technology Group (SATG) 8

8

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

▪
Filter by which loops

are vectorized!

Focus on
hot loops

What vectorization
issues do I have?

How efficient
is the code?

What prevents
vectorization?

Which Vector instructions
are being used?

Trip Counts

Get Faster Code Faster!

Software and Advanced Technology Group (SATG) 9

Vector Efficiency: All The Data In One Place
My “performance thermometer”

Survey: Find out if your code is “under vectorized” and why

Achieved
Efficiency

Original (scalar)
code efficiency.

Corresponds

to 1x speed-up.

Upper bound:

100%
efficiency

4x gain

(VL=4)

• Auto-vectorization: affected <3% of code

• With moderate speed-ups

• First attempt to simply put #pragma simd:

• Introduced slow-down

• Look at Vector Issues and Traits to find out why

• All kinds of “memory manipulations”

• Usually an indication of “bad” access pattern

Software and Advanced Technology Group (SATG) 10

What are peels and remainders?

1
0

Intel Confidential

// xAVX

// 256 bits wide regs

// holds 4 x 64bit vals

void Func(double *pA)

{

for (int i=0; i<19;i++)

pA[i] = …;

}

1

2 4

6 8

10 12

14 16

18

3

7

11

15

5

9

13

17

Vectorized
Body

Peel

Remainder

0

3
2

 b
y

te
 b

o
u

n
d

a
ry

Software and Advanced Technology Group (SATG) 11

11

Spend your time in the most efficient place!
A typical vectorized loop consists of…

▪ Optional peel part

• Used for the unaligned references in your loop.
Uses Scalar or slower vector.

▪ Main vector body

• Fastest among the three!

▪ Remainder part

• Due to the number of iterations (trip count) not being divisible by
vector length. Uses Scalar or slower vector.

▪ Larger vector register means more iterations in peel/remainder

• Make sure you align your data! (and you tell the compiler it is aligned!)

• Make the number of iterations divisible by the vector length!

Fastest!

Less
Fast
Less
Fast

Software and Advanced Technology Group (SATG) 12

Click to see recommendation

Advisor shows hints to fix
performance issue

Get Specific Advice For Improving Vectorization
Intel® Advisor – Vectorization Advisor

12

Software and Advanced Technology Group (SATG) 13

Critical Data Made Easy
Loop Trip Counts

13

Check actual
trip counts

Loop is iterating
101 times but

called > million
times

Since the loop is
called so many

times it would be
a win if we can

get it to
vectorize.

Knowing the time
spent in a loop is not

enough!

Software and Advanced Technology Group (SATG) 14

Why No Vectorization?
Intel Advisor – Vectorization Advisor

Software and Advanced Technology Group (SATG) 15

Data Dependencies
Is it safe to force the compiler to vectorize?

for (i = 0; i < N; i++) // Loop carried dependencies!

A[i] = A[i - K] * С[i]; // Need to check if it is safe to force

// the compiler to vectorize!

Software and Advanced Technology Group (SATG) 16

Is It Safe to Vectorize?
Loop-carried dependencies analysis verifies correctness

16

Vector Dependency
prevents

Vectorization!

Select loop for
Correct

Analysis and
press play!

Select loop for
Correct

Analysis and
press play!

Software and Advanced Technology Group (SATG) 17

Find vector optimization opportunities
Memory Access pattern analysis

Stride distribution

for (i=0; i<N; i++)

A[B[i]] = C[i]*D[i]

for (i=0; i<N; i++)

A[i] = C[i]*D[i]

for (i=0; i<N; i++)

point[i].x = x[i]

Unit-Stride access

Constant stride access

Variable stride access

Software and Advanced Technology Group (SATG) 18

Run Memory Access Patterns analysis,
just to check how memory is used in the
loop and the called function

Select loops of
interest

Improve Vectorization
Memory Access pattern analysis

1
8

19Intel ConfidentialOne Intel Software & Architecture (OISA)

Roofline in Intel® Advisor

Software and Advanced Technology Group (SATG) 20

What is a Roofline Chart?

▪A Roofline Chart plots application performance against hardware
limitations.

• Where are the bottlenecks?

• How much performance is
being left on the table?

• Which bottlenecks can be
addressed, and which should
be addressed?

• What’s the most likely cause?

• What are the next steps?

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Software and Advanced Technology Group (SATG) 21

21

What is the Roofline Model?
Do you know how fast you should run?

▪ Comes from Berkeley

▪ Performance is limited by equations/implementation & code
generation/hardware

▪ 2 hardware limitations

▪ PEAK Flops

▪ PEAK Bandwidth

▪ The application performance is bounded by hardware
specifications

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

Arithmetic Intensity
(Flops/Bytes)

Software and Advanced Technology Group (SATG) 22

Drawing the Roofline
Defining the speed of light

22

Gflops/s

AI [Flop/B]
8.7

1036

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

2 sockets Intel® Xeon® Processor E5-2697 v2
Peak Flop = 1036 Gflop/s
Peak BW = 119 GB/s

Software and Advanced Technology Group (SATG) 23

Ultimately
Compute-Bound

Ultimately
Memory-Bound

23

Ultimate Performance Limits

FLOPS

Arithmetic Intensity
FLOP/Byte

Performance cannot exceed the
machine’s capabilities, so each loop is
ultimately limited by either compute

or memory capacity.

Software and Advanced Technology Group (SATG) 24

24

Roofline Metrics

▪ Roofline is based on FLOPS and Arithmetic Intensity (AI).

• FLOPS: Floating-Point Operations / Second

• Arithmetic Intensity: FLOP / Byte Accessed

▪

Low AI High AI

Runs system benchmarks and collects timing data.

Shortcut to run Survey followed by Trip Counts + FLOPs

Collects memory traffic and FLOP data.
Must be run separately due to higher overhead that

would interfere with timing measurements.

Collecting this
information in
Intel® Advisor
requires two
analyses.

SpMV FFTs N-body

Software and Advanced Technology Group (SATG) 25

25

The Intel® Advisor Roofline Interface

• Roofs are based on
benchmarks run before the
application.

• Roofs can be hidden,
highlighted, or adjusted.

• Intel® Advisor has size- and
color-coding for dots.

• Color code by duration or
vectorization status

• Categories, cutoffs, and visual
style can be modified.

26Intel ConfidentialOne Intel Software & Architecture (OISA)

Roofline with call stacks

Software and Advanced Technology Group (SATG) 27

27

Self Data vs Total Data

▪ The original Roofline used only self data: only work done directly is recorded.

▪ The Roofline with call stacks uses both self data and total data, which includes
work done in functions or loops called as well as work done directly.

for (int i = 0; i < 10; i++)

{

X = i * 24 + 179.4 - i;

Y = (i + 18) / 72.8;

foobar();

for (int j = 0; j < 3; j++)

{

Z = i * j + 7;

}

}

Self

Total

Software and Advanced Technology Group (SATG) 28

28

Reading the Roofline with Call Stacks
Visualizing the Call Chain

▪Arrows indicate relationships between dots.

▪ X is called directly by Y.

▪ X directly calls Z

▪ The call stack displays the call chain for the
selected loop. Clicking an entry causes it to
flash on the Roofline for easy identification.

Y

Z

X

X

The selected
yellow dot was

called by the gray
dot, and it calls

the red and green
dots.

Selecting the
green dot shows
that it is called by

the yellow dot,
and doesn’t call
anything itself.

Software and Advanced Technology Group (SATG) 29

29

Reading the Roofline with Call Stacks
Expanding and Collapsing Outer Loops

▪ Collapsing and expanding dots switches between self- and total-data mode.

Dots with no self data are
grayed out when expanded
and in color when collapsed.

Dots that have self data have
the appearance and location
based on it when expanded,
with a halo of the size related
to their total data.

When collapsed, their appearance and
location changes to reflect the total data.

Collapse

Collapse

30Intel ConfidentialOne Intel Software & Architecture (OISA)

Memory-level Roofline Model

Software and Advanced Technology Group (SATG) 31

31

The Roofline Model with Intel® Advisor

▪ First Implementation: Cache-Aware Roofline Model (CARM)
▪ Based on instrumentation

▪ 2 runs, one for sampling, timing loops & functions (low overhead), second one for instrumentation

▪ Algorithmic version of the Roofline Model; optimization usually doesn’t impact AI

▪ ☺ Really powerful to characterize an algorithm

▪  Not easy to interpret

▪ New Implementation: Memory Level roofline (MLR)
▪ Based on cache simulation, evaluate the traffic between each memory subsystem

(L1/L2/LLC/DRAM)

▪ ☺ Much closer to the original Roofline model, provide meaningful information for improvement

▪  Requires more time to run

Software and Advanced Technology Group (SATG) 32

32

Memory Level Roofline

▪ Single loop generates up to 4 dots
▪ Same performance for each dot (it’s the same loop) but with different data transfers

▪ 1st dot comes from CARM (L1)

▪ 2nd dot comes from traffic L1 <-> L2

▪ 3rd dot comes from traffic L2 <-> L3

▪ 4th dot comes from traffic L3 <-> DRAM

▪ What can we expect?
▪ Due to data locality : AI(L1) =< AI(L2) =< AI(L3) =< AI(DRAM)

▪ This only applies in general if you do unit-strided access

𝐴𝐼 =
𝐹𝑙𝑜𝑝𝑠

𝐵𝑦𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

Software and Advanced Technology Group (SATG) 33

Memory-Level Roofline Model in Intel® Advisor

Software and Advanced Technology Group (SATG) 34

How to Interpret Your Current Limitation?

• Each dot must be compared
to its corresponding roof

• A dot can’t break its
corresponding roof

• A first idea of potential
performance can be
achieved by projections

Arithmetic intensity (Flop/Byte)

Peak Flop/s

L1 GB/s

L2 GB/s

L3 GB/s

DRAM GB/s

Find the minimum of all
memory subsystems

Actual performance

Performance might be limited by
DRAM

35Intel ConfidentialOne Intel Software & Architecture (OISA)

GUI and Command Line

Software and Advanced Technology Group (SATG) 36

Get Roofline data using GUI
36

Command line
created by GUI

Software and Advanced Technology Group (SATG) 37

Get roofline data using command line. Example:
37

▪ Roofline collection runs executable twice implicitly: survey and tripcounts

advisor -collect roofline -project-dir <dir> -- <app> <params>

▪ Alternative method collects survey and tripcounts explicitly, required for MPI!

advisor -collect survey -project-dir <dir> -- <app> <params>

advisor -collect tripcounts -flop -project-dir <dir> -- <app> <params>

Additional flags for tripcounts, e.g.: -stacks, -enable-cache-simulation (see -help collect)

▪ Analyze roofline and other Advisor data in the GUI

advisor-gui <dir>

38Intel ConfidentialOne Intel Software & Architecture (OISA)

Resources

Software and Advanced Technology Group (SATG) 39

References

Roofline model proposed by Williams, Waterman, Patterson:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html

“Cache-aware Roofline model: Upgrading the loft” (Ilic, Pratas, Sousa, INESC-
ID/IST, Thec Uni of Lisbon)
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Software and Advanced Technology Group (SATG) 40

Advisor Resources

Intel® Advisor

▪ Product page – overview, features, FAQs…

▪ What’s New?

▪ Training materials – Cookbook, User Guide, Tutorials

▪ Support Forum

▪ Priority Support - Online Service Center

Additional Analysis Tools

▪ Intel® VTune™ Profiler – performance profiler

▪ Intel® Inspector – memory and thread checker/ debugger

▪ Intel® Trace Analyzer and Collector - MPI Analyzer and Profiler

All Development Products

▪ Intel® oneAPI Toolkits

https://software.intel.com/advisor
https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-release-notes.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/introduction/tutorials.html
https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://software.intel.com/content/www/us/en/develop/support/priority-support.html
https://software.intel.com/vtune
https://software.intel.com/inspector
https://software.intel.com/trace-analyzer
https://software.intel.com/oneapi

Software and Advanced Technology Group (SATG) 41

Questions?

Software and Advanced Technology Group (SATG) 42

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

44Intel ConfidentialOne Intel Software & Architecture (OISA)

Backup

Software and Advanced Technology Group (SATG) 45

Running Intel Advisor with MPI
45

▪ Example: Collect from middle rank of 3x3x3 cube of processes:

mpirun -n 27 advisor -collect survey-project-dir <dir> <app>

mpirun -n 13 <app> \
: -n 1 advisor -collect survey -project-dir <dir> <app> \
: -n 13 <app>

▪ Intel MPI-specific (adding corner rank and middle surface rank):

mpirun -gtool “advisor -collect survey -project-dir <dir> :1,5,14” \
-n 27 <app>

▪ or using the environment variable I_MPI_GTOOL:

export I_MPI_GTOOL=“advisor –collect survey --project-dir <dir> :1,5,14”
mpirun -n 27 <executable>

46Intel ConfidentialOne Intel Software & Architecture (OISA)

Non-Intel Compilers

Software and Advanced Technology Group (SATG) 47

47

▪ Advisor using
GCC, Microsoft or Intel Compiler:

• Finds un-vectorized loops

• Analyze SIMD, AVX, AVX2, AVX-512

• Dependency Analysis – safely force
vectorization with a pragma

• Memory Access Pattern Analysis -
optimize stride and caching

• Trip Counts

• FLOPS metrics with masking

• Roofline Analysis – balance memory vs.
compute optimization

▪ Intel Compiler Adds:

• Usually better optimized vectorization

• Better compiler optimization messages

▪ Intel Advisor with Intel Compiler Adds:

• Finds inefficiently vectorized loops and
estimates performance gain

• Compiler optimization report messages
displayed on the source

• More tips for improving vectorization

• Optimize for AVX-512 even without
AVX-512 hardware

Advisor works with GCC and Microsoft Compilers
Adds bonus capabilities with the Intel Compiler

