Intel[®] VTune[™] Profiler

Vladimir Tsymbal, Technical Consulting Engineer, Intel

Agenda

A short intro to the Intel® VTune Profiler

Collecting Hotspots with and w/o EBS

Analysis types overview

Microarchitecture Exploration

HPC Performance Characterization

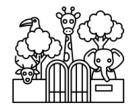
Memory Analysis

What is VTune Profiler, and what it is not?

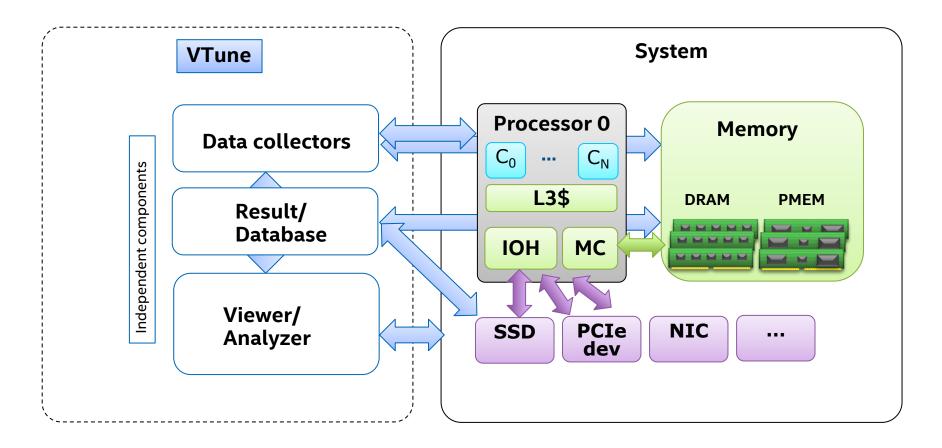
- The Intel[®] VTune[™] Profiler (aka VTune) if one of the many dynamic performance profiling tools (WPA on Windows, Linux Perf, gprof) for native (C,C++, C#,Fortran, and to some extent jit or interpreted languages, Java, Python, OpenCL, Sycl/DPC++, Go)
 - o Highest awareness of Intel CPU, GPU, and FPGA microarchitecture
 - o Hight awareness of parallel runtimes: native/Posix threads, OpenMP, TBB, MPI, Intel's C/C++ Parallel Language Extensions

o Fully integrated and self-contained tool

- Nots (Buts):
 - o Not a static code analyzer, but...
 - o Not a code/system debugger, but...
 - o Not a system tracing tool like strace, but...
 - o Not a comprehensive advisor for code change, but...


VTune is all the following

- System wide profiling
- Application-level profiling
- Profiling hardware events
- Detecting CPU/GPU microarchitecture issues
- Heap/stack memory analysis
- System I/O analysis
- Statistical and Instrumented measurement
- Averaged measurements and precise tracing



Tools diversity in the VTune Zoo

- VTune Profiler
 - vtune, vtune-gui, vtune-backend
- APS Application Performance Snapshot tool aps, aps-report
- VPP VTune Platform Profiler
 - vpp-server, vpp-collect
- Utilities
 - vtune-self-checker, prepare-debugfs
- Standalone data collectors
 - sep, pin, emon

Visible to a user VTune (standalone) structure

More complex structure with remote and server usage

Data collectors

- Software data collector (Hotspots, Threading, etc.)
 - o No restrictions on virtual environments
 - o No driver
 - o Instrumentation based (overhead)
 - o No administrative rights required
- Hardware collector (Hotspots, Microarchitecture, Memory Analysis, I/O, Accelerators, etc.)
 - o VTune driver (sep) or driverless mode (Linux Perf), some admin's <u>help</u> is required
 - o For stack collection yet another driver (vtss) or limited Perf stacks
 - o All Hardware PMU events and Uncore events
 - o Hight resolution (down to 0.1 ms sampling interval)
 - o VMs need to virtualize PMU MSRs
- System collectors
 - o Windows (ETW), Linux (strace)

Profiling result directory

- A self-contained config, logs, raw traces, and resolved results data base
- Created automatically in a project or current dir, or on path defined by a user
- Auto-numeration and pre-post-fixing for the analysis type
- CL option: -result-dir <path-to-my-result>
- Can be shared and viewed by other users
- Usually asked by Intel support engineers or developers (most system and config info is there)
- Can be accompanied with profiled app binaries. CL option: -archive -result-dir <path-to-my-result>
- Does not contain user source code by default (but can be added in a scope of opened results)
- Raw data traces obtained by collectors (sep, perf) can be imported/added to a result dir

Viewer/Analyzer interface

VT

GUI

The most comfortable and useful method of analysis

Good visual experience (complex data, scrolling, filtering, zooming in/out, etc.)

Can be launched locally (on an analyzed machine) or remotely

Command Line

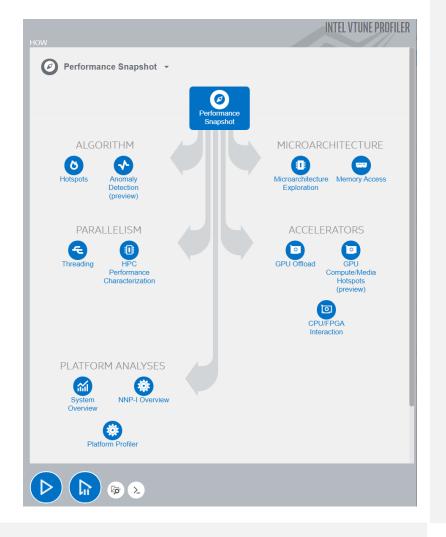
- Good for collection or analysis procedures automation
- Can be launched locally on a machine without GUI or remotely

No memory overhead for weak machines (try GNOME 3 Desktop on a machine with 4GB RAM)

HTML GUI via Web Server

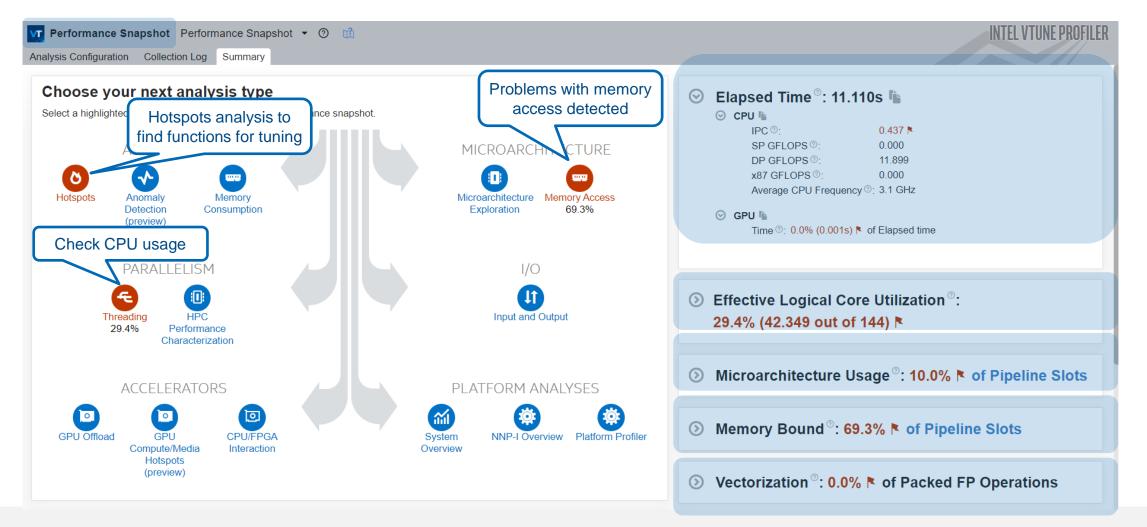
Super powerful method for machines management, remote computing and work collaboration

Requires VTune web server deployment (not a big deal, though)


Performance Profiling with Intel® VTune™ Profiler

Intel® VTune™ Profiler

A full set of performance analysis types


Which one to start with?

- Start with Performance Snapshot if you want to explore performance weakness of your app and get a recommendation how to continue
- Run Platform Profiler for analyzing long running apps on the whole platform (CPU, Memory, Disks, Ethernet, etc.)
- With Input-Output analysis make a snapshot of communication interfaces performance (PCIe, QPI, DRAM, SATA)
- The HPC Performance Characterization helps when your app is parallelized with OpenMP or MPI runtimes
- Dive deeper into a microarchitecture level inefficiencies of application execution with the Microarchitecture Exploration
- Investigate application memory bandwidth and latency problems with the Memory Access

Performance Snapshot

All application weaknesses in one snapshot

HPC Performance Characterization

VT HPC Performance Characterization HPC Performance Characterization 🝷 🕐 👘

Analysis Configuration Collection Log Summary Bottom-up

Seffective Physical Core Utilization[®]: 54.7% (39.378 out of 72) ►

Effective Logical Core Utilization 2: 34.8% (50.169 out of 144) N

- Serial Time (outside parallel regions) 2: 0.191s (1.9%)
- Section Se

Estimated Ideal Time ⁽²⁾: 7.810s (78.6%)

OpenMP Potential Gain [®]: 1.933s (19.5%) ▶

State of the second second

This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance assuming no runtime overhead.

OpenMP Region	OpenMP Potential Gain ②	(%) ⑦	OpenMP Region Time <a>>
multiply1\$omp\$parallel:64@unknown:179:180	1.933s 🖡	19.5% 🏲	9.744s

*N/A is applied to non-summable metrics.

S Effective CPU Utilization Histogram

Vectorization[®]: 0.0% k of Packed FP Operations

- Instruction Mix:
 - ③ SP FLOPs ^③:
 DP FLOPs ^③:
 Packed ^③:
 Packed ^③:
 Constant [△]:
 Cons
 - Non-FP®: 77.7% of uOps

FP Arith/Mem Rd Instr. Ratio 2: 0.887

FP Arith/Mem Wr Instr. Ratio 2: 1.890

○ Top Loops/Functions with FPU Usage by CPU Time

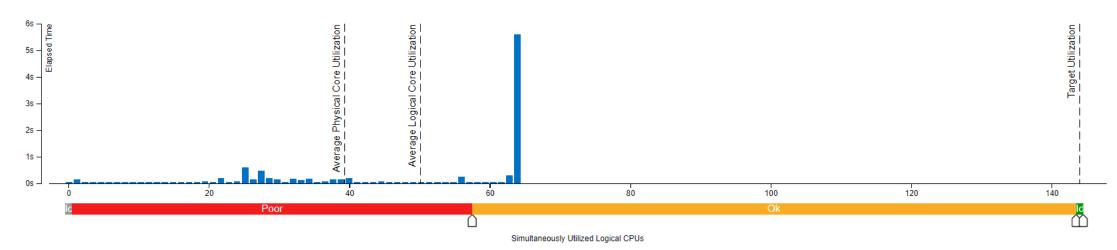
This section provides information for the most time consuming loops/functions with floating point operations.

Function	CPU Time 💿	$\%$ of FP Ops \oslash	FP Ops: Packed <a>?	FP Ops: Scalar <a>?	Vector Instruction Set <a>>	Loop Type 🔊
[Loop at line 182 in multiply1\$omp\$parallel@179]	493.126s	24.6%	0.0%	100.0% 🏲		Body

Characterize OpenMP or MPI application

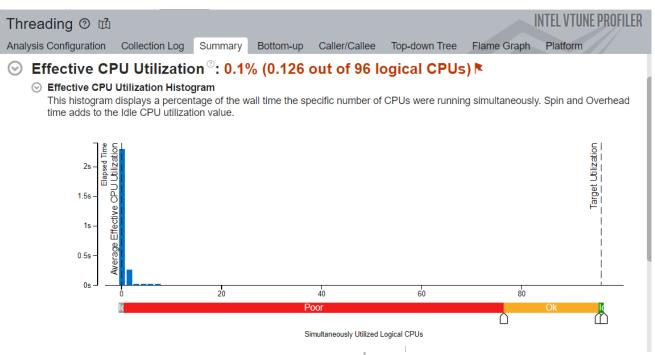
INTEL VTUNE PROFILER

Parallelization: more details Now many cores were really used in a system


Effective Physical Core Utilization[®]: 54.7% (39.378 out of 72)

Effective Logical Core Utilization 144) 8

- Serial Time (outside parallel regions) ⁽²⁾: 0.191s (1.9%)
- > Parallel Region Time : 9.744s (98.1%)
- Effective CPU Utilization Histogram


This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

Addr of buf1 = 0x7f51f38b2010 Offs of buf1 = 0x7f51f38b2180 Addr of buf2 = 0x7f51eb8b1010 Offs of buf2 = 0x7f51eb8b11c0 Addr of buf3 = 0x7f51e38b0010 Offs of buf3 = 0x7f51e38b0100 Addr of buf4 = 0x7f51db8af010 Offs of buf4 = 0x7f51db8af140 Threads #: 64 OpenMP threads Matrix size: 4096 Using multiply kernel: multiply1 Execution time = 7.114 seconds

intel.¹⁴

Threading analysis, TBB based apps

○ Wait Time with poor CPU Utilization ^②: 6.325s (100.0% of Wait Time) [№]

📀 Top Waiting Objects 临

This section lists the objects that spent the most time waiting in your application. Objects can wait on specific calls, such as sleep() or I/O, or on contended synchronizations. A significant amount of Wait time associated with a synchronization object reflects high contention for that object and, thus, reduced parallelism.

Sync Object	Wait Time with poor CPU Utilization ③	(% from Object Wait Time) <a>?	Wait Count ?
Futex 0xb2cbe538	6.294s	100.0%	913
Futex 0xbcf65048	0.031s	100.0%	10
Stream 0x59b268b6	0.000s	100.0%	1
Stream /proc/cpuinfo 0x1ca6ac0a	0.000s	100.0%	1
Stream /proc/meminfo 0xc313ae18	0.000s	100.0%	1
[Others]	0.000s	100.0%	3

Spin and Overhead Time ^②: 188.376s (99.8% of CPU Time) ▶

O Top Functions with Spin or Overhead Time h

The section lists top functions in your application with the most spin and overhead time.

Function	Module	Spin and ③ Overhead Time	(% from
tbb::detail::d1::start_for <tbb::detail::d1::blocked_range<unsigned long="">, gemm<float> (void, tbb::detail::d1::blocked_range<unsigned long="">*, tbb::detail::d1::blocked_range< unsigned long> const*, tbb::detail::d1::blocked_range<unsigned long=""> const*, unsigne d long, unsigned long, unsigned long)::{lambda(tbb::detail::d1::blocked_range<unsign ed long> const&)#1}, tbb::detail::d1::alt::alt::alt::d1::blocked_range<unsign ed long> const&)#1}, tbb::detail::d1::alt::alt::alt::alt::alt::alt::alt::al</unsign </unsign </unsigned></unsigned></float></tbb::detail::d1::blocked_range<unsigned>	01_paralle I_for_solut ion	183.663s 🏽	97.3% 🖻
tbb::detail::r1::market::create_one_job	libtbb.so.1 2	4.678s	2.5%
sched_yield	libc.so.6	0.010s	0.0%

What were the TBB internals that keep waits

Threading ⑦ 础				
Analysis Configuration Collection Log Summ	nary Bottom-up Caller/Calle	e Top-down	Tree Flame	e Graph Platform
Grouping: Sync Object / Function / Call Stack				 ✓
Sync Object / Function / Call Stack	Wait Time by Utilization ▼ [≫] I I P O I O	Wait Count	Object Type	Object Creation Module and Function
▶ Futex 0xb2cbe538	6.294s	913	Futex	libtbb.so.12!_INTERNAL795efa8b::tbb::detail::r1::futex_wait
Futex 0xbcf65048	0.031s	10	Futex	libtbb.so.12!_INTERNAL795efa8b::tbb::detail::r1::futex_wait
▶ Stream 0x59b268b6	0.000s	1	Stream	libtbbmalloc.so.2!fgets.3
Stream /proc/cpuinfo 0x1ca6ac0a	0.000s	1	Stream	libtbb.so.12!tbb::detail::r1::ITT_DoUnsafeOneTimeInitialization
Stream /proc/meminfo 0xc313ae18	0.000s	1	Stream	libtbbmalloc.so.2!_Z9parseFileILi100ELi2EEvPKcRAT0K1
Stream /proc/sys/vm/nr_hugepages 0x7fa52fc0	0.000s	1	Stream	libtbbmalloc.so.2!_Z9parseFileILi100ELi1EEvPKcRAT0K1
Stream /sys/kernel/mm/transparent_hugepage/e	0.000s	1	Stream	libtbbmalloc.so.2!_Z9parseFileILi100ELi1EEvPKcRAT0K1
Stream /proc/self/maps 0x69913e68	0.000s	1	Stream	libpthread.so.0!pthread_getattr_np
🔎 : 🕇 🗕 🖝 🖝 0s 0.2s	0.4s 0.6s 0.8s		1.2s 1.4s	1.6s 1.8s 2s 2.2s 2.4s
				· · · · · · · · · · · · · · · · · · ·
명 01_parallel_for (TID: 96921) TBB Worker Thread (TID: 9				
TBB Worker Thread (TID: 9				1
TBB Worker Thread (TID: 9				
TBB Worker Thread (TID: 9		1	l.	* <u>1</u>
TBB Worker Thread (TID: 9			Jr	
TBB Worker Thread (TID: 9			, P	
TBB Worker Thread (TID: 9			1	4 4

Hotspots Hots	pots by CPU U	Itilization 🔹 🕐	۲ů								
Analysis Configura	ation Collection	on Log Summary	Bottom-up	Caller/Callee	Top-down Tree	Flame Graph	Platform				
User	System	Synchronizat	🗧 Overhead	🔲 Other	4		5 🛎	₩ 10	Search.	6	٩
miniFE::driver <doub main libc_start_main start</doub 	k [[Op [[Stit [_IN] k] . [Op [. mini r solve <minife::csi< th=""><th>miniFE::matvec_std<mi kmp_invoke_microta OpenMP dispatcher] Stitch point frame] _INTERNAL_25 _kmp_fork_call OpenMP fork] miniFE::matvec_std<mi RMatrix<double, int,="" int<="" th=""><th>sk _src_kmp_runtime niFE::CSRMatrix<(</th><th>_cpp_6e21bbbe::_ double, int, int>, mi</th><th>_kmp_itt_stack_caller niFE::Vector<double,< th=""><th>_create int, int>>::operat</th><th>k k [Op min</th><th>_km Functi _km Modu INTE Source</th><th></th><th>-3 vait</th><th>r_cpp_b9f r_cpp_b9f8 L_cpp_cfe967e4</th></double,<></th></double,></mi </mi </th></minife::csi<>	miniFE::matvec_std <mi kmp_invoke_microta OpenMP dispatcher] Stitch point frame] _INTERNAL_25 _kmp_fork_call OpenMP fork] miniFE::matvec_std<mi RMatrix<double, int,="" int<="" th=""><th>sk _src_kmp_runtime niFE::CSRMatrix<(</th><th>_cpp_6e21bbbe::_ double, int, int>, mi</th><th>_kmp_itt_stack_caller niFE::Vector<double,< th=""><th>_create int, int>>::operat</th><th>k k [Op min</th><th>_km Functi _km Modu INTE Source</th><th></th><th>-3 vait</th><th>r_cpp_b9f r_cpp_b9f8 L_cpp_cfe967e4</th></double,<></th></double,></mi </mi 	sk _src_kmp_runtime niFE::CSRMatrix<(_cpp_6e21bbbe::_ double, int, int>, mi	_kmp_itt_stack_caller niFE::Vector <double,< th=""><th>_create int, int>>::operat</th><th>k k [Op min</th><th>_km Functi _km Modu INTE Source</th><th></th><th>-3 vait</th><th>r_cpp_b9f r_cpp_b9f8 L_cpp_cfe967e4</th></double,<>	_create int, int>>::operat	k k [Op min	_km Functi _km Modu INTE Source		-3 vait	r_cpp_b9f r_cpp_b9f8 L_cpp_cfe967e4
Total		2									

CPU Time: 439.066s of 1703.590s (25.8%)

Hotspots and Optimization Insights Get additional insights on execution efficiency

Microarchitecture Exploration Hotspots by CPU Utilization - ⑦ 🕅			INTEL VTUNE PROFILE
alysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Pl	latform		
 Elapsed Time[®]: 11.238s ¹ CPU Time[®]: 467.981s Instructions Retired: 598,790,400,000 CPI Rate[®]: 2.516 ¹ Total Thread Count: 576 Paused Time[®]: 0s Top Hotspots This section lists the most active functions in your application. Optimizing these hotspot functions typic 	cally results in im	proving overall application	 Hotspots Insights If you see significant hotspots in the Top Hotspots list, switch to the Bottom-up view for in-depth analysis per function. Otherwise, use the Caller/Callee view to track critical paths for these hotspots. Explore Additional Insights Parallelism ③ : 28.1% (40.451 out of 144 logical CPUs) ► Use Threading to explore more opportunities to increase parallelism in your application. Microarchitecture Usage ③ : 9.2% ► Use Microarchitecture Exploration to explore how efficiently your application runs on the used hardware.
performance. Function	Module	CPU Time 💿	Vector Register Utilization ⊚ : 12.5% ► Use Intel Advisor to learn more on vectorization efficiency of your
multiply1\$omp\$parallel@179	matrix.icc	438.366s	application.
init_scratch_end	vmlinux	13.733s	
		13.733s 10.906s	
init_scratch_end			
init_scratch_end _INTERNALc1e8d79f::kmp_wait_template <kmp_flag_64<(bool)0, (bool)1="">, (bool)1, (bool)0, (bool)</kmp_flag_64<(bool)0,>	1> libiomp5.so	10.906s	

Compiler Optimization Options

Use vectorization switches

Linux*, OS X*: -x

- Might enable Intel processor specific optimizations
- Processor-check added to "main" routine: Application errors in case SIMD feature missing or non-Intel processor with appropriate/informative message

Example: -xCORE-AVX512

Special switch for Linux*, OS X*: -xHost

- Compiler checks SIMD features of current host processor (where built on) and makes use of latest SIMD feature available
- Code only executes on processors with same SIMD feature or later as on build host

gcc options:

-march=*cpu-type*

'icelake-server'

Help Compiler for Better Parallelization

Remove dependencies between loop iterations for vectorization

- Improving unit stride (at fastest index walk)
- Loop interchange a known trick (leading to an excessive data transfers)
- Give compiler a hint like ivdev pragma when arrays are passed via pointers
- If possible, align data allocation to 64 Bytes (for AVX-512)

Increase level of parallelization and work balance

- Utilize all CPU physical or logical Cores
- Adjust OMP compactness for OpenMP workloads
- Provide enough data size for workload balancing

First Optimization Results

Implemented loop interchange, data alignment and vectorization options

- Significantly improved Elapsed Time
- CPI Rate is only slightly better
- Still underutilizing Cores
- Cache bound memory accesses
- Vectorization with 256-bit registers, which is AVX only

VT.	Microarchitecture Explore	tion HPC Performance Characterization 🝷 🕐 👔
Anal	ysis Configuration Collectio	n Log Summary Bottom-up
\odot	Elapsed Time [®] : 2	.329s ኬ
	SP GFLOPS :	0.000
	DP GFLOPS :	59.645
	x87 GFLOPS ():	0.000
	CPI Rate ⁽²⁾ :	1.984 💌
	Average CPU Frequency	/ ℗: 3.0 GHz
	Total Thread Count:	579
\odot	Effective Physical	Core Utilization [©] : 24.3% (17.472 out of 72)
0	-	tilization ©: 21.3% (30.741 out of 144) N
	-	
	Effective CPU Utilization	n Histogram
\odot	Memory Bound [®] :	54.2% Nof Pipeline Slots
	Cache Bound :	54.6% 💌 of Clockticks
	DRAM Bound :	7.6% of Clockticks
	NUMA: % of Remote Ac	cesses : 52.8%
0	Vectorization®. 10	00.0% of Packed FP Operations
0		0.0% of racked in operations
	 Instruction Mix: SP FLOPs[®]: 	0.0% of uOps
	O DP FLOPS ⁽²⁾ :	30.9% of uOps
	OP FLOPS OP Packed ⁽²⁾ :	100.0% from DP FP
	Packed ♥. 128-bit ℗:	0.0% from DP FP
	256-bit ⁽):	100.0% F from DP FP
	250-bit ©:	0.0% from DP FP
	Scalar : Scalar :	0.0% from DP FP
	x87 ELOPs	0.0% of uOps
	Non-FP [®]	69.1% of uOps
	FP Arith/Mem Wr Instr	
	i r Anun/meni wi Ilisu. r	allo . 1.303

Compiler Vectorization

Why not AVX-512?

Address 🔺	Source Line	Assembly	성 CPU Time 🖉
0x402770		Block 16:	
0x402770	66	vmovupdy (%r12,%r10,8), %ymm2	40.037s
0x402776	66	vfmadd213pdy (%r15,%r10,8), %ymm1, %ymm2	8.752s 📒
0x40277c	66	vmovupdy %ymm2, (%r15,%r10,8)	6.690s 📒
0x402782	65	add \$0x4, %r10	0.025s
0x402786	65	cmp %rax, %r10	0.003s
0x402789	65	j <u>b 0x402770 <block 16=""></block></u>	7.972s 📕

Check Compiler's Opt report

-qopt-report=2-qopt-report-phase=vec

LOOP BEGIN at ../src/multiply.c(65,4) remark #15300: LOOP WAS VECTORIZED remark #26013: Compiler has chosen to target XMM/YMM vector. Try using -qopt-zmm-usage=high to override LOOP END

Force Compiler for ZMM vector?

-qopt-zmm-usage=high

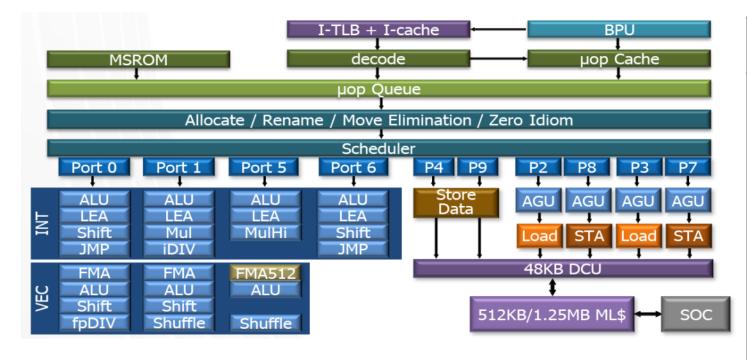
Check Opt report again

LOOP BEGIN at ../src/multiply.c(65,4) remark #15300: LOOP WAS VECTORIZED LOOP END

Collect VTune profile and compare

Address 🔺	Source Line	Assembly	👍 CPU Time 🖹
0x402871		Block 16:	
0x402871	66	vmovupsz (%r12,%rbx,8), %zmm4	63.988s
0x402878	66	vfmadd213pdz (%r9,%rbx,8), %zmm3, %zmm4	23.717s 💼
0x40287f	66	vmovupdz %zmm4, (%r9,%rbx,8)	3.327s
0x402886	65	add \$0x8, %rbx	0.026s
0x40288a	65	cmp %rax, %rbx	0.004s
0x40288d	65	j <u>b 0x402871 <block 16=""></block></u>	3.583s

Why Performance Results are not much better?

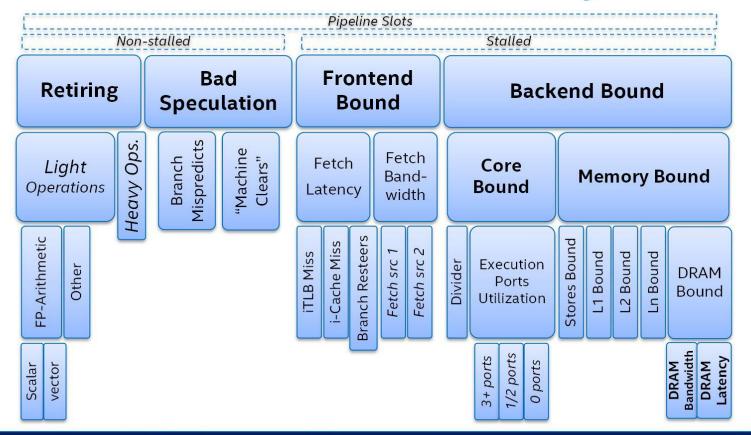

zmm registers

xmm/ymm registers

VT Microarchitecture Exploration HPC Performance Characterization • ③ 🗤 Microarchitecture Exploration HPC Performance Characterization 🝷 💿 📆 **111** Analysis Configuration Collection Log Summary Bottom-up Analysis Configuration Collection Log Summary Bottom-up Elapsed Time [©]: 2.329s 🐚 😔 Elapsed Time[®]: 1.976s 0.000 SP GELOPS 2 SP GFLOPS 2: 0 0 000 68 910 DP GFLOPS 2: 59.645 DP GFLOPS 2: x87 GFLOPS : 0.000 x87 GELOPS ^{②·} 0.000 CPI Rate 2: 1.984 🎙 CPI Rate 2 4.116 🖻 Average CPU Frequency 2: 3.0 GHz Average CPU Frequency 2: 2.7 GHz 579 Total Thread Count: 645 Total Thread Count: Substitution Section Secti Effective Physical Core Utilization 36.3% (26.131 out of 72) \odot Effective Logical Core Utilization 2: 31.7% (45.618 out of 144) Effective Logical Core Utilization 2: 21.3% (30.741 out of 144) N Effective CPU Utilization Histogram Effective CPU Utilization Histogram Memory Bound[≫]: 66.6% ► of Pipeline Slots Memory Bound[®]: 54.2% of Pipeline Slots (\checkmark) 57.9% Nof Clockticks Cache Bound 2: 54.6% 64 of Clockticks Cache Bound 2: DRAM Bound 2: 14.3% Not Clockticks DRAM Bound ⁽²⁾ 7.6% of Clockticks NUMA: % of Remote Accesses 2: 52.8% NUMA: % of Remote Accesses 2: 70.9% NUMA: % Vectorization[®]: 100.0% of Packed FP Operations ✓ Vectorization[®]: 100.0% of Packed FP Operations Instruction Mix: Instruction Mix: SP FLOPs : SP FLOPs 2: 0.0% of uOps 0.0% of uOps OP FLOPs ^②: 25.9% of uOps OP FLOPs 𝔅: 30.9% of uOps ⊘ Packed ^②: 100.0% from DP FP Packed ⁽²⁾: 100.0% from DP FP from DP FP 128-bit 2 0.0% from DP FP 128-bit 2: 0.0% 0.0% from DP FP 256-bit 🕐 100.0% ***** from DP FP 256-bit 2: 512-bit 2: 100.0% from DP FP 512-bit 2: 0.0% from DP FP 0.0% from DP FP Scalar : 0.0% from DP FP Scalar : x87 FLOPs 2: 0.0% of uOps x87 FLOPs 🛛 : 0.0% of uOps Non-FP ^{⑦·} 74.1% of uOps Non-FP 2: 69.1% of uOps FP Arith/Mem Wr Instr. Ratio 2: 2.054 FP Arith/Mem Wr Instr. Ratio 2 1,989

Top-Down Method for Performance Analysis

Ice Lake Core Microarchitecture


	Cascade Lake	Ice Lake (per core)
Out-of-order Window	224	384
In-flight Loads + Stores	72 + 56	128 + 72
Scheduler Entries	97	160
Register Files – Integer + FP	180 + 168	280 +224
Allocation Queue	64/thread	70/thread; 140/1 thread
L1D Cache (KB)	32	48
L1D BW (B/Cyc) – Load + Store	128 + 64	128 + 64
L2 Unified TLB	1.5K	2K
Mid-level Cache (MB)	1	1.25

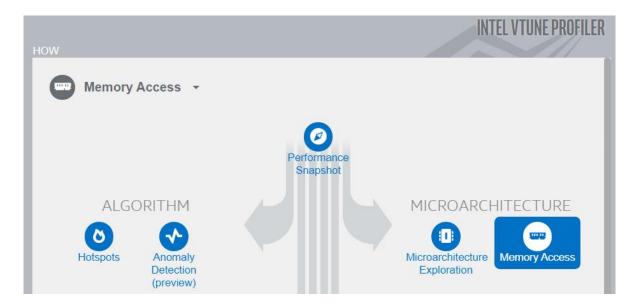
- Wider and deeper machine: wider allocation and execution resources + larger structures Improved Front-end: higher capacity and improved branch predictor
- Enhancements in TLBs, single thread execution, prefetching
- Server enhancements larger Mid-level Cache (L2) + second FMA

Increased instruction level parallelism

Top-Down Method for Performance Analysis

One Bottlenecks Hierarchy*

*Reference paper: A. Yasin, "A Top-Down Method for Performance Analysis and Counters Architecture", ISPASS 2014


Microarchitecture Exploration

Microarchitecture Exploration Micro	architecture Exploration 🝷 🧿	INTEL VTUNE PROFILER
Analysis Configuration Collection Log Sum	mary Bottom-up Event Count	Platform
Solution State		How good your code for the CPU
Clockticks: 2	46,564,000,000	
Instructions Retired:	59,906,400,000	The metric value is high.
CPI Rate ⁽²⁾ :	4.116 🖻	This can indicate that the
MUX Reliability ⁽²⁾ :	0.998	significant fraction of execution pipeline slots
Retiring [®] :	9.2% of Pipeline Slots	could be stalled due to
Front-End Bound [®] :	5.5% of Pipeline Slots	
Bad Speculation [®] :	0.3% of Pipeline Slots	66.6% - Memory Bound stores. Use Memory Access
Sack-End Bound [®] :	85.0% 🖻 of Pipeline Slots	analysis to have the metric breakdown by memory
Memory Bound ⁽²⁾ :	66.6% 🖻 of Pipeline Slots	hierarchy, memory
O L1 Bound [®] :	8.2% of Clockticks	bandwidth information,
L2 Bound [®] :	2.4% of Clockticks	Correlation by memory
O L3 Bound [®] :	47.4% 🖻 of Clockticks	9.2% - Retiring
Contested Accesses (?):	0.0% 🕅 of Clockticks	
Data Sharing [®] :	15.7% 🖻 of Clockticks	18.4% - Core Bound This metric represents how
L3 Latency ⁽²⁾ :	58.9% 🕅 of Clockticks	much Core non-memory
SQ Full ⁽²⁾ :	17.1% 🖻 of Clockticks	, uDino
DRAM Bound ⁽²⁾ :	14.3% 💌 of Clockticks	μPipe
Store Bound ⁽²⁾ :	0.0% of Clockticks	This diagram represents inefficiencies in CPU usage. Treat it as a pipe with an output flow equal to the "pipe efficiency" ratio: (Actual Instructions Retired)/(Maximum Possible
Ore Bound ⁽²⁾ :	18.4% 🖻 of Pipeline Slots	Instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe
Average CPU Frequency ⁽²⁾ :	2.7 GHz	shape gets more narrow.
Total Thread Count:	645	
Paused Time :	0s	

Intel® VTune™ Profiler Memory Access Analysis

VTune[™] Profiler Memory Access

Both problems: Memory Latency and Memory Bandwidth are estimated

- Latency problem estimation against Code and Memory Objects, and the Memory Level involved
- Bandwidth measurements are system wide (no code attribution, but Time stamps attribution)
- Like with any other type of analysis, investigate the Summary for your application and then focus on smaller range: functions or loops

Platform Diagram

A high-level view on data flow in a system

Platform Diagram

Memory Issues Hierarchy

Memory Access Memory Usage -	0 🕅			
Analysis Configuration Collection Log Sum	mary Bottom-up Platform			
Selapsed Time [®] : 2.140s				
CPU Time ⁽²⁾ :	108.691s			
Memory Bound ^③ :	72.3% 🏲 of Pipeline Slots			
L1 Bound [®] :	6.6% of Clockticks			
L2 Bound ⁽²⁾ :	2.7% of Clockticks			
L3 Bound [®] :	50.0% 🕅 of Clockticks			
⊘ DRAM Bound [®] :	17.8% 🕅 of Clockticks			
DRAM Bandwidth Bound ⁽²⁾ :	0.0% of Elapsed Time			
Store Bound ⁽²⁾ :	0.1% of Clockticks			
NUMA: % of Remote Accesses ?:	72.2% 🛌			
UPI Utilization Bound [®] :	36.5% 🖻 of Elapsed Time			
Loads:	19,411,782,336			
Stores:	9,571,487,136			
LLC Miss Count [®] :	689,089,296			
Average Latency (cycles) .	280			
Total Thread Count:	641			
Paused Time ?:	0s			

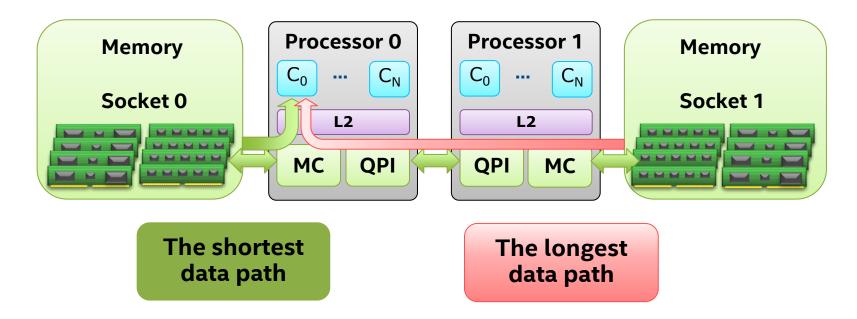
Discover inefficient data access

- Finding which memory level is providing data with highest latency
- How much in % the problem is affecting performance
- If it's DRAM, then quickly identify if there is a NUMA problem (unbalanced access to remote DRAM)
- Go to the functions level (Bottom-Up Tab) for more details of responsible code
- Collect Memory Objects for more details on responsible data

Memory Objects

Instrument memory allocation with a single option

HOW				
ت	Memory /	Access		•
Measure a set of metrics to identify memory access related issues (for example, specific for NUMA architectures). This analysis type is based on the hardware event-based sampling collection. <u>Learn more</u>				
CPU samp	ling interval, ms			
✓ Analyz	e dynamic memory	/ objects		
Minimal dynamic memory object size to track, in bytes				
1024				
✓ Evalua	ate max DRAM ban	dwidth		
Analyz	e OpenMP regions	5		

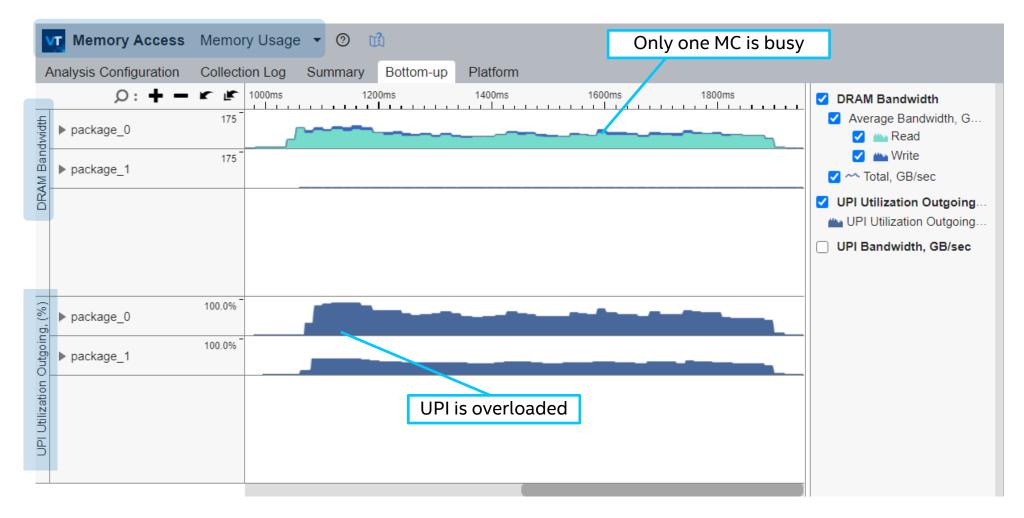

- Finding allocation place for memory objects that are "responsible" for CPU stalls
- Memory objects are identified by allocation source line and call stack
- Enables allocations instrumentation (off by default) and threshold for objects size (1024 by default)
- Don't use it when not needed (due to overhead)

Memory Objects Decomposition

Grouping: Memory Object / Function / Allocation Stack					
Memory Object / Function	Loads	Stores	LLC Miss Count »	Average Latency (cycles)	
[Unknown]	42,001,260	12,600,378	0	2	
matrix.c:126 (128 MB)	11,200,336	18,565,956,962	2 0	0	
matrix.c:121 (128 MB)	19,659,389,764		8,998,429,846	805	
matrix.c:116 (128 MB)	17,520,125,588	c	70,004,900	46	
Load ope	erations	Store operations		ost of LLC Miss	
					Biggest latencies

- Helps when you do not know data layout
- Helps when the same code line operates at many arrays
- "Memory Object" Grouping helps to find significant data objects first

Dual Socket (-EP) System and NUMA Effects


Measuring Remote Memory Access

Memory Access Memory Usage -	· • •		
Analysis Configuration Collection Log Su	ummary Bottom-up Platform		
Selapsed Time [®] : 2.140s			
CPU Time [®] :	108.691s		
Memory Bound [®] :	72.3% 🖻 of Pipeline Slots		
L1 Bound ^(*) :	6.6% of Clockticks		
L2 Bound ^(*) :	2.7% of Clockticks		
L3 Bound ^(*) :	50.0% 🖻 of Clockticks		
⊘ DRAM Bound [®] :	17.8% 🖻 of Clockticks		
DRAM Bandwidth Bound ②	0.0% of Elapsed Time		
Store Bound [®] :	0.1% of Clockticks		
NUMA: % of Remote Accesses	⑦: 72.2% ►		
UPI Utilization Bound [®] :	36.5% Sof Elapsed Time		
Loads:	19,411,782,336 Remote access		
Stores:	9,571,487,136		
LLC Miss Count [®] :	689,089,296		
Average Latency (cycles) ?:	280		
Total Thread Count:	641		
Paused Time ^② :	0s		

- Remote DRAM access has biggest effect
- Remote memory access latency ~1.7x greater than local memory
- Local memory **bandwidth** can be up to ~2x greater than remote
- Remote Cache access bares its penalty as well

Refer to: Local and Remote Memory: Memory in a Linux/NUMA System

Visualizing NUMA Problems

Refer to: Optimizing Applications for NUMA

- VTune Profiler is a comprehensive set that contains tools covering all aspects of platforms performance, from system wide and long app runs down to small execution kernels and microarchitecture specific on all intel platforms
- VTune Profiler helps to address algorithmic, multithreading, microarchitecture and memory issues
- VTune Profiler infrastructure provides flexible means for data collection, analysis, storage and team collaboration

Quick References

Intel[®] VTune[™] Profiler – Performance Profiler

- Product page overview, features, FAQs...
- Training materials <u>Cookbooks</u>, <u>User Guide</u>, <u>Processor Tuning Guides</u>
- Support Forum
- Online Service Center Secure Priority Support
- What's New?

Additional Analysis Tools

- Intel[®] Advisor Design and optimize for efficient vectorization, threading, memory usage, and accelerator offload. Roofline and flow graph analysis.
- Intel[®] Inspector memory and thread checker/ debugger
- Intel[®] Trace Analyzer and Collector MPI Analyzer and Profiler

Additional Development Products

Intel[®] Software Development Products

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. See backup for configuration details. For more complete information about performance and benchmark results, visit <u>www.intel.com/benchmarks</u>.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

#