INtel® V Tune™ Profiler

i Vladimir Tsymbal, Technical Consulting Engineer, Intel

intel.

Agenda

A short intro to the Intel® V Tune Profiler
Collecting Hotspots with and w/o EBS
Analysis types overview
Microarchitecture Exploration

HPC Performance Characterization
Memory Analysis

Intel® Software Tools Training

intel.

2

What is V Tune Profiler, and what it is not?

= Thelntel® VTune™ Profiler (aka VTune) if one of the many dynamic performance profiling tools (\WPA on
Windows, Linux Perf, gprof) for native (C,C++, C#,Fortran, and to some extent jit or interpreted languages, Java,
Python, OpenCL, Sycl/DPC++, Go)

o Highest awareness of Intel CPU, GPU, and FPGA microarchitecture
o Hight awareness of parallel runtimes: native/Posix threads, OpenMP, TBB, MP, Intel's C/C++ Parallel Language Extensions

o Fully integrated and self-contained tool

= Nots (Buts):
o Not a static code analyzer, but...
o Notacode/system debugger, but...
o Notasystem tracing tool like strace, but...

o Notacomprehensive advisor for code change, but...

Intel® Software Tools Training intel.

V Tune is all the following

= System wide profiling

= Application-level profiling

» Profiling hardware events

= Detecting CPU/GPU microarchitecture issues
= Heap/stack memory analysis

= System I/O analysis

= Statistical and Instrumented measurement

= Averaged measurements and precise tracing

Intel® Software Tools Training

intel.

4

Tools diversity inthe V Tune Zoo

= \/Tune Profiler

vtune, vtune-gui, vtune-backend
= APS — Application Performance Snapshot tool
aps, aps-report
= VPP -V Tune Platform Profiler
vpp-server, vpp-collect
= Ultilities
vtune-self-checker, prepare-debugfs
= Standalone data collectors

sep, plin, emon

Intel® Software Tools Training intel.

Visible to a user VTune (standalone) structure

VTune 4 System R
: Dat llect \@(Processoro\j>/ Memory \
ata collectors
el N
¢ Result/ 14\ . 13§ N DRAM PMEM
e R e e
2~ J IOH MC F_Vi
5 : , /
{? Viewer/ sj [\
U R e (e) (e (e
! L)

__

More complex structure with remote and server usage

Intel® Software Tools Training intel.

Data collectors

= Software data collector (Hotspots, Threading, etc.)
o No restrictions on virtual environments
o Nodriver
o Instrumentation based (overhead)

o No administrative rights required

= Hardware collector (Hotspots, Microarchitecture, Memory Analysis, /O, Accelerators, etc.)
o VTune driver (sep) or driverless mode (Linux Perf), some admin’s help is required
o For stack collection yet another driver (vtss) or limited Perf stacks
o AllHardware PMU events and Uncore events
o Hight resolution (down to 0.1 ms sampling interval)
o VMs need to virtualize PMU MSRs

= System collectors
o Windows (ETW), Linux (strace)

Intel® Software Tools Training

intel.

7

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/configuration-recipes/profiling-hardware-without-sampling-drivers.html

Profiling result directory —

= Aself-contained config, logs, raw traces, and resolved results data base

» Created automatically in a project or current dir, or on path defined by a user

= Auto-numeration and pre- post-fixing for the analysis type

= CL option: -result-dir <path-to-my-result>

= Can be shared and viewed by other users

= Usually asked by Intel support engineers or developers (most system and config info is there)

= Can be accompanied with profiled app binaries. CL option: -archive -result-dir <path-to-my-result>
= Does not contain user source code by default (but can be added in a scope of opened results)

= Raw data traces obtained by collectors (sep, perf) can be imported/added to a result dir

Intel® Software Tools Training intel. 8

Viewer/Analyzer interface

GUI

The most comfortable and useful method of analysis
Good visual experience (complex data, scrolling, filtering, zooming in/out, etc.)

Can be launched locally (on an analyzed machine) or remotely
Command Line
Good for collection or analysis procedures automation

Can be launched locally on a machine without GUI or remotely

No memory overhead for weak machines (try GNOME 3 Desktop on a machine with 4GB RAM)
HTML GUI via Web Server

Super powerful method for machines management, remote computing and work collaboration

Requires VTune web server deployment (not a big deal, though)

Intel® Software Tools Training

intel.

9

“Performance Profiling with
ntel® V Tune™ Profiler

intel.

INntel® V Tune™ Profiler
A full set of performance analysis types

Which one to start with?

Start with Performance Snapshot if you want to explore performance
weakness of your app and get arecommendation how to continue

Run Platform Profiler for analyzing long running apps on the whole platform
(CPU, Memory, Disks, Ethernet, etc.)

With Input-Output analysis make a snapshot of communication interfaces
performance (PCle, QPI, DRAM, SATA)

The HPC Performance Characterization helps when your app is
parallelized with OpenMP or MPI runtimes

Dive deeper into a microarchitecture level inefficiencies of application
execution with the Microarchitecture Exploration

Investigate application memory bandwidth and latency problems with the
Memory Access

@ Performance Snapshot ~

ALGORITHM

)

Hotspots Anomaly
Detection
(preview)

o

PARALLELISM

PLATFORM ANALYSES

System NNP-I Overview
Overview

Platform Profiler

00

ELVTUNEPROFILER
7

a_—

MICROARCHITECTURE

Microarchitecture Memory Access
Exploration

ACCELERATORS

GPU Offload GPU

Compute/Media
Hotspots
(preview)

el

CPU/FPGA
Interaction

intel.

11

Performance Snapshot
All application weaknesses in one snapshot

Performance Snapshot ~ @ 7 EL VTUNE PROFILER
Analysis Configuration Collection Log Summary

[Problems with memory] © Elapsed Time ": 11.110s '

Choose your next analysis

Selectahighlighteq Hotspots analysis to
find functions for tuning

access detected © crUk

IPC@: 0.437 &
M|CROMTU RE SP GFLOPS = 0.000
DP GFLOPS @: 11.809

x87 GFLOPS @- 0.000

o=
&) -

Hotspots Anomaly Memaory Microarchitecture Memaory Access Average CPU Frequency ©- 3.1 GHz

Dete(j,tion Consumption Exploration 69.3% © GPU

—_ Time @: 0.0% (0.001s) ® of Elapsed time
Check CPU usage

PARALLELISM I/O

o 0 () Effective Logical Core Utilization -
Threading HPC Input and Output 0
Denare e 29.4% (42.349 out of 144) k

Characterization

(> Microarchitecture Usage“: 10.0% & of Pipeline Slots

ACCELERATORS PLATFORM ANALYSES
@
®. 0 A A
GPU Offload GPU CPU/FPGA System NMNP-I Overview Platform Profiler @ Memory Bound : 69.3% K of Plpe"ne Slots
Compute/Media Interaction Overview
Hotspots
(preview) _ B Py _
(>) Vectorization : 0.0% & of Packed FP Operations

intel.

HPC Performance Characterization

HPC Performance Characterization ~ ® 17 ‘!uI!EI' VTUNEBJ/".EH
Characterize OpenMP or MPI application

Analysis Configuration Collection Log Summary Bottom-up

() Effective Physical Core Utilization : 54.7% (39.378 out of 72) &

Effective Logical Core Utilization @ 34 8% (50 169 out of 144) &
(») serial Time (outside parallel regions) ©: 0.191s (1.9%)
(~) Parallel Region Time ©: 9.744s (98.1%)
Estimated Ideal Time ©: 7.810s (78.6%)
OpenMP Potential Gain ©: 1.933s (19.5%) &

() Top OpenMP Regions by Potential Gain
This section lists OpenlP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance
assuming no runtime overhead.

OpenlP Region OpenMP Potential Gain © (%) OpenMP Region Time ©
multiply 1ompparallel:64@unknown:179:180 1933s k. 195% R 9.744s

*N/A is applied to non-summable metrics.

(3) Effective CPU Utilization Histogram

) Vectorization: 0.0% ® of Packed FP Operations
) Instruction Mix:

) SPFLOPsC 0.0% of uOps

) DPFLOPs®: 22 3% of uOps
() Packed ©: 0.0% from DP FP
Scalar - 100.0% & from DP FP

x87 FLOPs ©: 0.0% of uOps

Non-FP @ T77.7% of uOps

FP Arith/Mem Rd Instr. Ratio @: 0.887
FP Arith/Mem Wr Instr. Ratio ©@: 1.890

() Top Loops/Functions with FPU Usage by CPU Time
This section provides information for the most time consuming loops/functions with floating point operations.

Function CPU Time @ % of FP Ops® FP Ops: Packed @ FP Ops: Scalar @ Vector Instruction Set@ Loop Type @
[Loop at line 182 in multiply1ompparallel@179] 493.126s 24 6% 0.0% 100.0% k& Body

intel.

Parallelization: more details

of bufl
Now many cores were really used in a system P of btz
Eiii 7t51db8ate
bufa f51db8at
: 64 OpenMP threads

Effective Physical Core Utilization : 54.7% (39.378 out of 72) &

Effective Logical Core Utilization ©: 34.8% (50.169 out of 144) & Us

ing multiply kernel: multiplyl
Serial Time (outside parallel regions) “: 0.191s (1.9%) Execution time = 7.114 seconds
Parallel Region Time ': 9.744s (98.1%)
Effective CPU Utilization Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

65

E = = 5!
= ﬁl ﬁl EI
5542 = = =
= =g =g =
=
45 2 2 @ |
o o E‘j
Ol Ol gl
3 8! 8! '
ol =l |
= al |

25 o o
%I %I |
@l 5 |
15 o zl |
II < | |
0s - o = = = u T T T T T L

=}
(=]
=1
e
=

60 80 100 120 140

Simultaneously Utilized Logical CPUs

intel.

Threading analysis, T

Summary

S based apps

() Effective CPU Utilization Histogram

5
]
Elapsed Time

Average Effective CPU Uilization

055+

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead
time adds to the Idle CPU utilization value.

) Effective CPU Utilization “: 0.1% (0.126 out of 96 logical CPUs) k

Target Uilization

0s -

() Wait Time with poor CPU Utilization ©': 6.325s (100.0% of Wait Time) &

() Top Waiting Objects &

This section lists the objects that spent the most time waiting in your application. Objects can wait on specific calls, such as
sleep() or I/0, or on contended synchronizations. A significant amount of Wait time associated with a synchronization object

reflects high contention for that object and, thus, reduced parallelism.

20

Simultaneously Utilized Logical CPUs

Sync Object Wait Time with poor CPU Utilization @ (% from Object Wait Time) @ Wait Count @
Futex Oxb2cbe538 6.294s 100.0% 913
Futex 0xbcf65048 0.031s 100.0% 10
Stream 0x59b268b6 0.000s 100.0% 1
Stream /proc/cpuinfo 0x1cagac0a 0.000s 100.0% 1
Stream /proc/meminfo 0xc313ae18 0.000s 100.0% 1
[Others] 0.000s 100.0% 3

() Spin and Overhead Time ©: 188.376s (99.8% of CPU Time) & &

() Top Functions with Spin or Overhead Time &
The section lists top functions in your application with the most spin and overhead time.

Spinand @ (% from ©
Function Module Qverhead CPU
Time Time)
tbb::detail::d1::start_for<tbb::detail::d1::blocked_range<unsigned long>, gemm<float>
(void, tbb::detail::d1::blocked_range<unsigned long=>*, tbb::detail::d1::blocked_range< 01_paralle
unsigned long> const®, tbb::detail::d1::blocked_range<unsigned long> const”, unsigne |_for_solut 183.663s ™ 97.3% M
d long, unsigned long, unsigned long)::{lambda(tbb::detail::d1::blocked_range<unsign ion
ed long> const&)#1}, tbb::detail::d1::auto_partitioner const>::execute
tbb::detail::r1::market::create_one_job '2"’“’”'30'1 4.678s 2.5%
libc.so.6 0.010s 0.0%

sched_yield

intel.

15

What were the 1 BB internals that keep waits

Threading ® 1

Analysis Configuration Collection Log Summary Bottom-up

Caller/Callee Top-down Tree

Flame Graph Platform

)

Grou ping:‘ Sync Object / Function / Call Stack

-~
v x[2]

Wait Time by Utilization v *

Sync Object / Function / Call Stack 1. 1P. 10 L. M0. Wait Count Object Type Object Creation Module and Function

) Futex Oxb2che538 6.294s I e 913 Futex libtbb.so.12!_INTERNAL795efa8b::tbb::detail::r1::futex_wait
b Futex Oxbcf65048 0.031s | 10| Futex libtbb.so.12!_INTERNAL795efa8b::tbb::detail::r1::futex_wait
) Stream 0x59b268h6 0.000s 1 Stream libtbbmalloc.so.2!fgets.3

)+ Stream /proc/cpuinfo Ox1cabacOa 0.000s 1 Stream libtbb.so.12!tbb::detail::r1::ITT_DoUnsafeOneTimelnitializatio
}» Stream /proc/meminfo 0xc313ae18 0.000s 1 Stream libtbbmalloc.so.2!_Z9parseFilelLi100ELI2EEVPKcRATO__K1!
I+ Stream /proc/sys/ivm/nr_hugepages 0x7fab2fcO || 0.000s 1| Stream libtbbmalloc.so.2!_Z9parseFilelLi100ELI1EEVPKcRATO__K1!
) Stream /sys/kernel/mm/transparent_hugepage/g| 0.000s 1 Stream libtbbmalloc.so.2!_Z9parseFilelLi100ELI1EEVPKCRATO__K1!
)+ Stream /proc/self/maps 0x69913e68 0.000s 1 Stream libpthread.so.0!pthread_getattr_np

]
Q:+—r!‘lns 0.2s
01_parallel_for (TID: 96921)
TBB Worker Thread (TID: 9.
TBB Worker Thread (TID: 9.
TBB Worker Thread (TID: 9.

Thread

TBB Worker Thread (TID: 9.

TBB Worker Thread (TID: 9.
TBB Worker Thread (TID: 9.

9

9
TBB Worker Thread (TID: 9.

9

9

9

0.4s 0.6s 0.8s
|

intel.

16

—lame Graph

Flame Graph
O user [system B synchronizat... [Overhead B Other | A = | r - Search...

CPU Time: 439.066s

Function: kmp_flag_&4uwait
Madule: libiomp5.sc

Source File: kmp_wait_release.h
Function Type: System

CPU Time: 432.0665 of 1703.280s (25.8%)

intel. 7

Hotspots and Optimization Insights

Get additional insights on execution efficiency

. ®. L Hotspots Insights
@ EIapSEd Time : 11.238s '. If you see significant hotspots in the Top Hotspots list, switch to the Bottom-
® CPU Time@: 467.981s up view for in-depth analysis per function. Otherwise, use the Caller/Callee
Instructions Retired: 598,790 400,000 view to track critical paths for these hotspots.
CPI Rate ©: 2516 & Explore Additional Insights
Total Thread Count: 576 Parallelism @ : 28 1% (40.451 out of 144 logical CPUs) k
Paused Time @- Os Use < Threading to explore more opportunities to increase parallelism

in your application.

Microarchitecture Usage © : 9.2% k&
Use ‘IMicroarchitecture Exploration to explore how efficiently your

() Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application application runs on the used hardware.
performance.) o
Vector Register Utilization @ : 125%

Function Module CPU Time® Use Intel Advisor to learn more on vectorization efficiency of your
multiply 13omp$parallel@179 matrix.icc 438.366s application.
__init_scratch_end vmlinux 13.733s
_INTERNALc1e8d791.__kmp_wait_template<kmp_flag_64<(bool)0, (bool)1>, (bool)1, (bool)0, (bool)1> libiomp5.so 10.906s
_INTERNALc1e8d79f.___kmp_hyper_barrier_gather..0 libiomp5.so 2.439s
[sep3] sepd 1.953s
[Others] N/A* 0.585s

intel. s

Compiler Optimization Options

Use vectorization switches
Linux*, OS X*: -x
» Might enable Intel processor specific optimizations

» Processor-check added to “main” routine: Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

Example: -xCORE-AV X512
Special switch for Linux*, OS X*: -xHost
= Compiler checks SIMD features of current host processor (where built on) and makes use of latest SIMD feature available
= Code only executes on processors with same SIMD feature or later as on build host
gcc options:
-march=cpu-type

‘icelake-server’

intel.

Help Compiler for Better Parallelization

Remove dependencies between loop iterations for vectorization

= |Improving unit stride (at fastest index walk)
= oop interchange — a known trick (leading to an excessive data transfers)
= Give compiler a hint like ivdev pragma when arrays are passed via pointers

= |f possible, align data allocation to 64 Bytes (for AVX-512)

Increase level of parallelization and work balance
= Utilize all CPU physical or logical Cores

= Adjust OMP compactness for OpenMP workloads

» Provide enough data size for workload balancing

intel. 2

—irst Optimization Results

Microarchitecture Exploration HPC Performance Characterization ~ &)

Analysis Configuration Collection Log Summary Bottom-up

_) Elapsed Time“: 2.329s I
Implemented loop interchange, Sp oFLoPS - o000

data alignment and vectorization options CPI Rate © 1984~

Average CPU Freguency ©: 3.0 GHz

Total Thread Count: 579
= Significantly improved Elapsed Time © Effective Physical Core Utilization ”: 24.3% (17.472 out of 72) &
Effective Logical Core Utilization ©: 21.3% (30.741 out of 144) ®
.) () Effective CPU Utilization Histogram
= CPIRateis only slightly better
&) Memory Bound : 54.2% [k of Pipeline Slots
u Stl” UﬂderutiHZiﬂg COI’eS Cache Bound @ 54.6% R of Clockticks
DRAM Bound 76% of Clockticks
NUMA: % of Remote Accesses ©; 52.8%
= Cache bound memory accesses
() Vectorization : 100.0% of Packed FP Operations
= Vectorization with 256-bit registers, which is AV X only © Instruction Mix:
() SPFLOPs@: 0.0% of uOps
) DPFLOPs©: 30.9% of uOps
) Packed ©: 100.0% from DP FP
128-bit - 0.0% from DP FP
256-bit @ 100.0% k& from DP FP
512-bit 0.0% from DP FP
Scalar™: 0.0% from DP FP
87 FLOPs ©: 0.0% of uOps
Non-FP 2 69.1% of uOps

FP Arith/Mem Wr Instr. Ratio ©: 1.989

intel.

Compiler Vectorization

Why not AV X-5127 Force Compiler for ZMM vector?

Address A ‘ Source Line | Assembly CPU Time |* ‘ _qopt_zm m_usage:h|gh
0x402770 Block 16:
0x402770 66 vmovupdy (%rl2,%rl0,8), Zymm2 40.037s
0x402776 66 vfmadd213pdy (%rl5,%r10,8), %ymml, %ymm2 | 8.752s (@ .
0x40277c 66 vmovupdy Fymm2, (%rl5,%rl0,8) 6.690s B CheCk Opt report agaln
0x402782 65 add 50x4, %rlo0 0.025s
0x402786 65 cmp %rax, %rl0 0.003s
0x402789 65 jb 0x402770 <Block 16> 79725 B LOOP BEGIN at ../src/multiply

remark #15300: LOQOP WAS VE
LOOP END

Check Compiler’s Opt report

-qopt-report=2 -qopt-report-phase=vec Collect V Tune profile and compare

Address A ‘ Source Line ‘ Assembly CPU Time [* ‘
0x402871 Block 16:
. 0x402871 66 vmovupsz (%rl2, %rbx,8), %zmmd 63.988s
_ : T ho tanget MM/ vector. 0x402878 66 vfmadd213pdz (%19, %rbx,8), %zmm3, zmmé | 23.717s @

"LOOP E ' 0x40287f 66 vmovupdz %zmmé, (%r9,%rbx,8) 3327s |

0x402886 65 add s0x8, %rbx 0.026s

0x40288a 69 cmp %rax, %rbx 0.004s

0x40288d 65 jb 0x402871 <Block 16> 3.583s |

intel.

Why Performance Results are not much better?

xmm/ymm registers zmm reqisters
Microarchitecture Exploration HPC Performance Characterization ~ @ 1) Microarchitecture Exploration HPC Performance Characterization ~ & 1)
Analysis Configuration Collection Log Summary Bottom-up Analysis Configuration Collection Log Summary Bottom-up
Elapsed Time :2.329s & —> Elapsed Time : 1.976s
SP GFLOPS = 0.000 SP GFLOPS - 0.000
DP GFLOPS @ 59.645 DP GFLOPS ©: 68.910
x87 GFLOPS @ 0.000 x87 GFLOPS @« 0.000
CPI Rate ©: 1984 & CPI Rate - 4116 &
Average CPU Frequency ©: 3.0 GHz Average CPU Frequency - 2.7 GHz
Total Thread Count: 579 Total Thread Count: 645

Effective Physical Core Utilization : 24.3% (17.472 out of 72) Effective Physical Core Utilization=: 36.3% (26.131 out of 72)

Effective Logical Core Utilization ©: 21.3% (30.741 out of 144) ® Effective Logical Core Utilization @: 31.7% (45.618 out of 144) &
Effective CPU Utilization Histogram Effective CPU Utilization Histogram
Memory Bound : 54.2% & of Pipeline Slots /mnﬁ: 66.6% ® of Pipeline Slots
Cache Bound ©; 54.6% & of Clockticks Cache Bound “: 57.9% M of Clockticks
DRAM Bound - 7.6% of Clockticks DRAM Bound 14 3% R of Clockticks
NUMA: % of Remote Accesses . 52.8% NUMA: % of Remote Accesses ©): 70.89% &
Vectorization : 100.0% of Packed FP Operations Vectorization : 100.0% of Packed FP Operations
Instruction Mix: Instruction Mix:
SP FLOPs ™ 0.0% of uOps SP FLOPs ™: 00% ofuOps
DP FLOPs : 30.9% of uOps DP FLOPs ™ 259% of uOps
Packed ' 100.0% from DP FP Packed ©: 100.0% from DP FP
128-bit ©: 0.0% from DP FP 128-bit ©: 0.0% fromDP FP
256-bit @: 100.0% & from DP FP /\ 256-bit & 0.0% fromDP FP
512-bit @ 0.0% from DP FP 512-bit @: 100.0% from DP FP
Scalar™: 0.0% from DP FP Scalar: 0.0% fromDP FP
x87 FLOPs : 0.0% of uOps Xx87 FLOPs @ 0.0% ofuOps
Non-FP ©: 69.1% of uOps Non-FP =: 741% of uOps
FP Arith/Mem Wr Instr Ratio @ 1.989 FP Arith/Mem Wr Instr. Ratio ©: 2.054

intel.

23

Top-Down Method for
Performance Analysis

intel. 2

lce Lake Core Microarchitecture

I-TLB + I-cache

Cascade Lake Ice Lake

decode - pop Cache (per core) (per core)
Out-of-order Window 224 384
Allocate / Rename / Move Elimination / Zero Idiom In-flight Loads.-l- Stores 72 +56 128+72
Scheduler Entries 97 160
Scheduler . il
Port0] Port1 I Port s Port 6 P4 | Po p2 | Ps | P3| P7 Register Files — 180 + 168 280 +224

Integer + FP

Store
Data @ @ . 70/thread;
Allocation Queue 64/thread 140/1 thread
; i L1D Cache (KB) 32 48

48KB DCU
L1D BW (B/Cyc) -
512KB/1.25MB ML$ Lozl 128+64 | 128+64
- ’ L2 Unified TLB 15K oK
Mid-level Cache (MB) 1 195

Wider and deeper machine: wider allocation and execution resources + larger structures
Improved Front-end: higher capacity and improved branch predictor

Enhancements in TLBs, single thread execution, prefetching _ _ _
Server enhancements — larger Mid-level Cache (L2) + second FMA Increased instruction level para”ellsm

intel. =

Top-Down Method for Performance Analysis

One Bottlenecks Hierarchy*

R ARy Pipeline Slots
e R el o T T SR
r e <
. Bad Frontend
Retirin . Backend Bound
L & Speculation Bound
.
e f 7 N
8 S| e Fetch
: Tt = etc
Light Co || € Fetch Core
o 9 Ci § o ||l Ew and- B d Memory Bound
peratlons é CE % rzu 8 Latency width oun
L = = \§ \ A
I (i N) [) [/e (e [e | | /i
L w0 ﬂ ©
- 0 B I | Bl R0 g T Tl T
o) - O e = i cllbe il e
£Els s12lg|[5]15] 8] Peoon | &||5] 5|l 3 pram
2 s alsSl(SIS| |2 e ¢|@|@|a| Bound
S Slels|lgls]| |B] vtlization [| 2|« [~ || €
o =19] 2|« ||« D=l =t l=i
L et E (V3]
\ m __,\ =7 \ /
= 2
5|5 gL s5(s ¢
s |9 9) < 3|< S
gl Q| 2 ol 3
a > e B o§ oS

*Reference paper: A. Yasin, “A Top-Down Method for Performance Analysis and Counters Architecture”, ISPASS 2014

intel.

26

Microarchitecture

—xploration

D s sn o <

Analysis Configuration

) Elapsed Time: 1.976s

ONCNCNO

Clockticks:
Instructions Retired:
CPI Rate
MUX Reliability @:
Retiring -
Front-End Bound @:
Bad Speculation
Back-End Bound @:
) Memory Bound @:
(*» L1 Bound
L2 Bound
& L3 Bound®:

Contested Accesses C

Data Sharing @:
L3 Latency @:
SQ Full @:
(® DRAM Bound @:
() Store Bound @:
() Core Bound @:
Average CPU Frequency
Total Thread Count:
Paused Time @:

Collection Log Summary Bottom-up Event Count

246,564 000,000
59,906 400,000
4116 R
0998
9.2%
5.5%
0.3%
850% K&
66 6% &
8.2%
2 4%
47 4% R’ of Clockticks
0.0% M of Clockticks
15.7% M of Clockticks
58.9% M of Clockticks
17 1% R of Clockticks
14 3% K& of Clockticks
0.0% of Clockticks

18.4% M of Pipeline Slots

2.7 GHz
645
Os

Platform

S\

66.6% - Memory Bound

9 2% - Retinng

18.4% - Core Bound

i

How good your code for the CPU

The metric value is high.
This can indicate that the
significant fraction of
execution pipeline slots
could be stalled due to
demand memory load and
stores. Use Memory Access
analysis to have the metric
breakdown by memaory
hierarchy, memory
bandwidth information,

Ncouelation by oo

This metric represents how
much Core non-memaor

This diagram represents inefficiencies in CPU usage. Treat it as a pipe with an output flow

equal to the "pipe efficiency” ratio: (Actual Instructions Retired)/{Maximum Possible
Instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe

shape gets more narrow.

EL VTUNE PROFILER
/4

intel.

27

A

tel®V Tune™

Profiler

Memory Access Analysis

intel. =z

V Tune™ Profiler Memory Access

Both problems: Memory Latency and Memory Bandwidth are estimated

INTEL VTUNE PROFILER

Memory Access ~

Performance
Snapshot
ALGORITHM MICROARCHITECTURE
0 O O
Hotspots Anomaly Microarchitecture JVEGaFaee=SS
Detection Exploration

(preview)
» Latency problem estimation against Code and Memory Objects, and the Memory Level involved

« Bandwidth measurements are system wide (no code attribution, but Time stamps attribution)

 Like with any other type of analysis, investigate the Summary for your application and then focus on smaller range: functions

or loops

intel.

29

Platform Diagram

A high-level view on data flow in a system

) Platform Diagram

(DN E| E|
DRAM SOCKETO SOCKET 1
19.3% Average Physical Core Utilization @ : Average Physical Core Utilization © :
« r 41.3% (14.864 out of 36) 35.6% (12.807 out of 36)
uPI
26.3%
-

0.6%

DRAM

intel.

30

Memory Issues Hierarchy

© o Discover inefficient data access
Platform

Analysis Configuration Collection Log Summary Bottom-up

© Elapsed T'me - 2.140s ' * Finding which memory level is providing data
CPU Time = - 108.691s with highest latency
&) Memory Bound ©: 72.3% & of Pipeline Slots
L1 Bound ©: 6.6% of Clockiicks « How much in % the problem is affecting
L2 Bound ©@: 2 7% of Clockticks f
.) _ performance
L3 Bound @: 50.0% ™ of Clockticks
© EDRAM Bodnd®: SRy of Clockficks + Ifi's DRAM, then quickly identify if there is a
DRAM Bandwidth Bound 2: 0.0% of Elapsed Time NUMA problem (unbalanced access to remote
Store Bound @ 0.1% of Clockticks
NUMA: % of Remote Accesses @: 72.2% & DRAM)
UPI Utilization Bound @ 36 5% ® of Elapsed Time
« Goto the functions level (Bottom-Up Tab) for
Loads: 19,411,762,336 _ _
Stores: 9,571 487 136 more details of responsible code
(® LLC Miss Count®: 689,089,296 _ _
Average Latency (cycles) O- 580 * Collect Memory Objects for more details on
Total Thread Count: 641 responsible data
Paused Time @ Us

intel.

Memory Objects

@ Memory Access v (@

Measure a set of metrics to identify memory access related issues (for
example, specific for NUMA architectures). This analysis type is based on

CPU sampling interval, ms

1

| Analyze dynamic memory objects

Minimal dynamic memory object size to track, in bytes

1024

+| Evaluate max DRAM bandwidth

Analyze OpenMF regions

nstrument memory allocation with a single option

Finding allocation place for memory objects that are
“responsible” for CPU stalls

Memory objects are identified by allocation source line and
call stack

Enables allocations instrumentation (off by default) and
threshold for objects size (1024 by default)

Don't use it when not needed (due to overhead)

intel.

32

Memory Objects Decomposition

Grouping:| Memory Object / Function / Allocation Stack

Memory Object / Function. . Loads Stores | LLC Miss Count [| Average Latency (cycles)

b [Unknown] 42,001,260 12,600,378 0 2
b matrix.c:126 (128 MB) 11,200,336 18,565,956,962 0 0
b matrix.cc121 (128 MB) 19,659,389,764 0 £,998,429.846 805
b matrix.c:116 (128 MB)/' 17,520,125,588 \ 0 70,004,900 46

Load operations

Store operations

Most of LLC Miss

Biggest latencies

* Helps when you do not know data layout
* Helps when the same code line operates at many arrays

* "“Memory Object” Grouping helps to find significant data objects first

intel. =3

Dual Socket (-EP) System and NUMA Effects

-~

Processor 0 Processor 1 / Memory \

. . . . Socket 1
2

L
¥/

Memory

Socket O

intel.

Measuring Remote Memory Access

Summary
) Elapsed Time : 2.140s & « Remote DRAM access has biggest effect
CPU Time @: 108.691s
© Memory Bound ©: 72.3% K of Pipeline Slots » Remote memory access latency ~1.7x greater than
L1 Bound @: 6.6% of Clockticks local memory
L2 Bound @: 27% of Clockticks
®- 0 ;
© ;iii:':ouﬁ 40 ?3:3.;: : sz(glikif:; * |_ocal memory bandwidth can be up to ~2x greater
DRAM Bandwidth Bound @: 0.0% of Elapsed Time than remote
Store Bound @: 0.1% of Clockticks
NUMA: % of Remote Accesses @: 72.2% R * Remote Cache access bares its penalty as well
UPI Utilization Bound ®: W
Loads: 19,411,782,336 Remote access
Stores: 9.571,487,136
() LLC Miss Count®: 689,089,296
Average Latency (cycles) @: 280
Total Thread Count: 641
Paused Time @: Os

Refer to: Local and Remote Memory: Memory in a Linux/NUMA System

intel.

http://www.ilinuxkernel.com/files/Local.and.Remote.Memory.Memory.in.a.Linux.NUMA.System.pdf

Visualizing NUMA

O: d = o ©

Problems

Bottom-up

1200ms 1400ms 1600ms 1800ms

Only one MC is busy

175

Pl Utilization Outgoing, (%)

iE
g P package 0
-D -]
= 175
M| p package 1
s
O
100.0% |
» package 0
100.0%
P package 1

UPI is overloaded

Refer to: Optimizing Applications for NUMA

DRAM Bandwidth

Average Bandwidth, G...

i Read
e Write
~~ Total, GB/sec

UPI Utilization Outgoing...
M UPI Utilization Outgoing...

[C] UPI Bandwidth, GB/sec

intel.

36

https://software.intel.com/en-us/articles/optimizing-applications-for-numa

Summary

= \VV Tune Profileris a comprehensive set that contains tools covering all aspects of
platforms performance, from system wide and long app runs down to small
execution kernels and microarchitecture specific on all intel platforms

= V Tune Profiler helps to address algorithmic, multithreading, microarchitecture and
Memory iIssues

= V Tune Profiler infrastructure provides flexible means for data collection, analysis,
storage and team collaboration

intel.

Quick References

Intel® VTune™ Profiler — Performance Profiler

» Product page — overview, features, FAQs...

» Training materials — Cookbooks, User Guide, Processor Tuning Guides

Support Forum

Online Service Center - Secure Priority Support
What's New?

Additional Analysis Tools

» |ntel® Advisor — Design and optimize for efficient vectorization, threading,
memory usage, and accelerator offload. Roofline and flow graph analysis

» |ntel® Inspector — memory and thread checker/ debugger

= |ntel® Trace Analyzer and Collector - MPI Analyzer and Profiler

Additional Development Products

= |ntel® Software Development Products

T

intel.

38

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://software.intel.com/content/www/us/en/develop/articles/processor-specific-performance-analysis-papers.html
https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://software.intel.com/content/www/us/en/develop/support/priority-support.html
https://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-release-notes
https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/inspector
https://software.intel.com/en-us/trace-analyzer
http://software.intel.com/en-us/intel-sdp-home/

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.
Your costs and results may vary.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSES, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice
Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. See backup for configuration details. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component
can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty
arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Intel® Software Tools Training intel.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

