Al on Intel Architecture

Dr. Séverine Habert, Al Engineering Manager

Agenda

- oneAPI AI Analytics Toolkit
 - Intel Distribution for Python
 - Classic Machine Learning Libraries
 - Deep Learning Frameworks
 - Intel Neural Compressor
- BigDL
- OpenVINO
- SigOpt

Al Software Ecosystem and Intel Tools

Engin	eer Data		Create Machine Learnin Deep Learning Model			Deploy	
	Container R oneCon		MLOps Cnvrg.io		eloper Sandbox DevCloud		
Accelerate	End to End Data Scien	ce and AI				AI Analytics	Toolkit
Connect AI to Big Data		Al Domain Tools: RecSys, Time Series, PPML			BigDL (Analytics Zoo)		
Data Analytics at Scale		Optimized Frameworks and Middleware Optimized			ze and Deploy Models		
	NumPy	TensorFlow	O PyTorch	xnet	Automate Model Tuning AutoML	Write Once Deploy Anywhere	Automate Low Precision Optimization
pandas	SciPy	Ø ONN	IX نرنرب Paddl	ePaddle			Neural
Spark	0 m n ı · s c ı	e learn	dmlc XGBoo	st		Toolkit	Compresso
neAPI	oneDAL		oneDNN		oneCCL on		neMKL

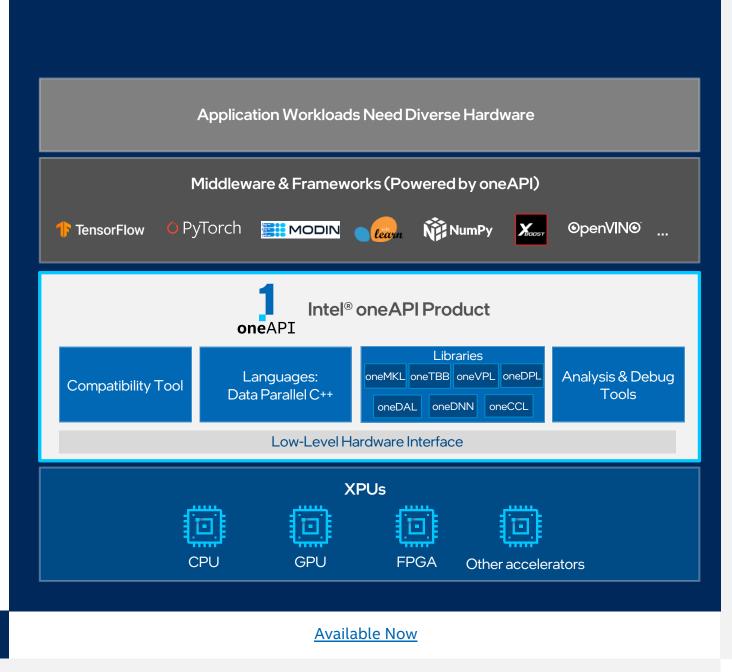
Intel Corporation

ÂÂ

oneAPI AI Analytics toolkit

Intel's oneAPI Ecosystem Built on Intel's Rich Heritage of CPU Tools Expanded to XPUs

oneAPI

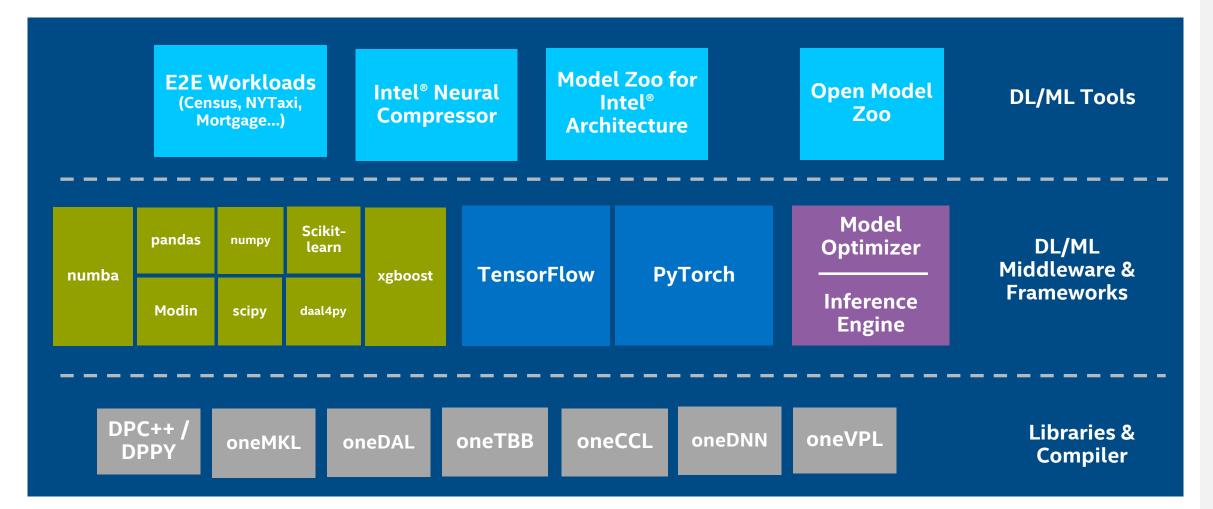

A cross-architecture language based on C++ and SYCL standards

Powerful libraries designed for acceleration of domain-specific functions

A complete set of advanced compilers, libraries, and porting, analysis and debugger tools

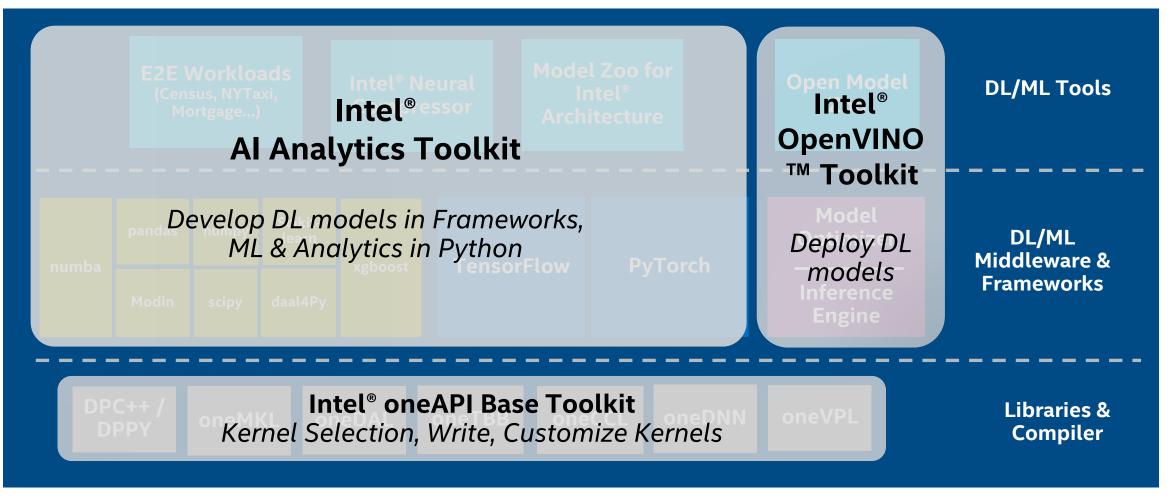
Powered by oneAPI

Frameworks and middleware that are built using one or more of the oneAPI industry specification elements, the DPC++ language, and libraries listed on oneapi.com.



Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future.

5


AI Software Stack for Intel® XPUs

Intel offers a robust software stack to maximize performance of diverse workloads

AI Software Stack for Intel® XPUs

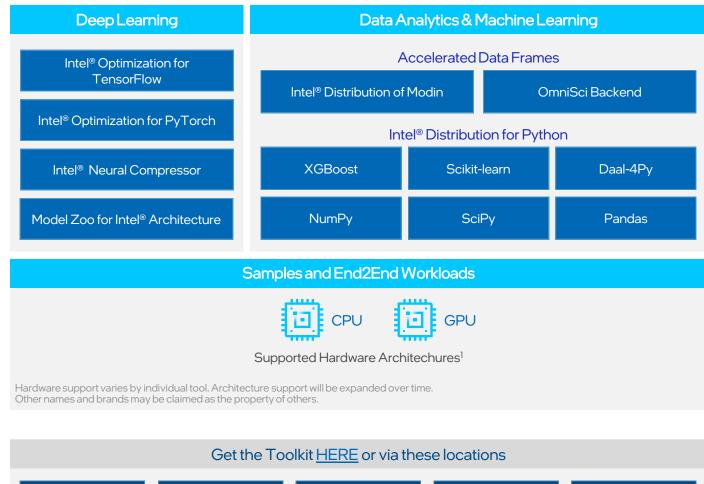
Intel offers a robust software stack to maximize performance of diverse workloads

Full Set of AI ML and DL Software Solutions Delivered with Intel's oneAPI Ecosystem

7

Intel[®] AI Analytics Toolkit

Powered by oneAPI


Accelerate end-to-end AI and data analytics pipelines with libraries optimized for Intel[®] architectures

Who Uses It?

Data scientists, AI researchers, ML and DL developers, AI application developers

Top Features/Benefits

- Deep learning performance for training and inference with Intel optimized DL frameworks and tools
- Drop-in acceleration for data analytics and machine learning workflows with compute-intensive Python packages

Apt, Yum

Docker

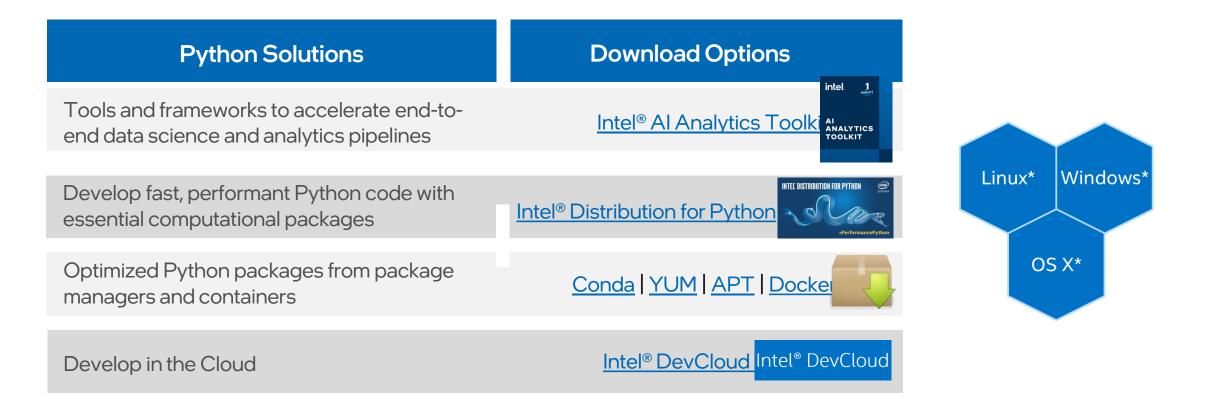
Intel Installer

Conda

Intel[®] DevCloud

ŝ

Classical Machine Learning


Intel[®] Distribution for Python

Intel® Distribution for Python

- Intel[®] Distribution for Python covers major usages in HPC and Data Science
- Achieve faster Python application performance right out of the box — with minimal or no changes to a code
- Accelerate NumPy*, SciPy*, and scikit-learn* with integrated Intel® Performance Libraries such as Intel® oneMKL (Math Kernel Library) and Intel® oneDAL (Data Analytics Library)
- By default, already integrated in Anaconda

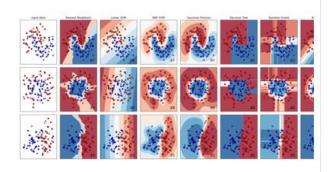
Choose Your Download Option

Intel Extension for Scikit-learn

THE MOST POPULAR ML PACKAGE FOR PYTHON*

learn Install User Guide API Examples More -

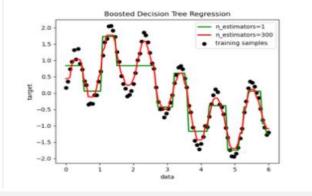
scikit-learn


Machine Learning in Python

Getting Started Release Highlights for 0.24 GitHub

Classification

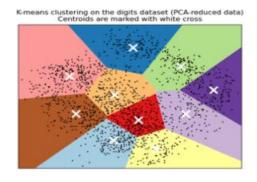
Identifying which category an object belongs to.


Applications: Spam detection, image recognition. **Algorithms:** SVM, nearest neighbors, random forest, and more...

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, nearest neighbors, random forest, and more...


Simple and efficient tools for predictive data analysis

- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, meanshift, and more...

intel

Go

Intel(R) Extension for Scikit-learn

Common Scikit-learn

```
• from sklearn.svm import SVC
```

```
X, Y = get_dataset()
```

```
clf = SVC().fit(X, y)
```

```
res = clf.predict(X)
```

Scikit-learn mainline

Scikit-learn with Intel CPU opts

import daal4py as d4p
d4p.patch_sklearn()
from sklearn.svm import SVC

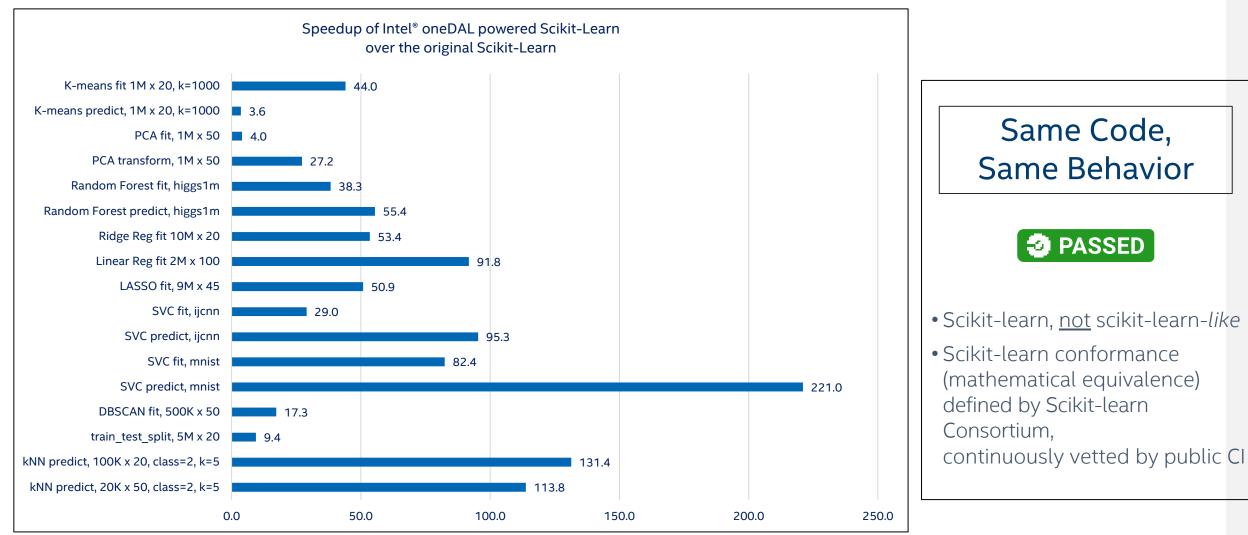
X, Y = get_dataset()

clf = SVC().fit(X, y)
res = clf.predict(X)

Available through Intel conda (conda install daal4py –c intel)

> python -m daal4py <your-scikit-learn-script>

Same Code, Same Behavior


PASSED

• Scikit-learn, <u>not</u> scikit-learn-*like*

 Scikit-learn conformance (mathematical equivalence) defined by Scikit-learn Consortium, continuously vetted by public CI

> Monkey-patch any scikitlearn* on the command-line

Intel optimized Scikit-Learn

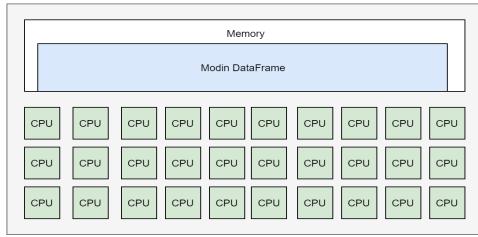
HW: Intel Xeon Platinum 8276L CPU @ 2.20GHz, 2 sockets, 28 cores per socket; Details: <u>https://medium.com/intel-analytics-software/accelerate-your-scikit-learn-applications-a06cacf44912</u>

Modin

Intel[®] Distribution of OpenVINO[™] toolkit / Product Overview

Intel distribution of Modin

- Pandas is a Python package for data manipulation and analysis that offers data structures and operations for manipulating numerical tables and time series
- Modin = Pandas + Scalability
- As simple as **import modin.pandas as pd**



- In opposition to Pandas, Modin will use all available cores on CPU
- No need to know how many cores your system has, and no need to specify how to distribute the data
- You can get speed-up even on a laptop
- As of 0.9 version, Modin supports 100% of Pandas API

Pandas* on Big Machine

Modin on Big Machine

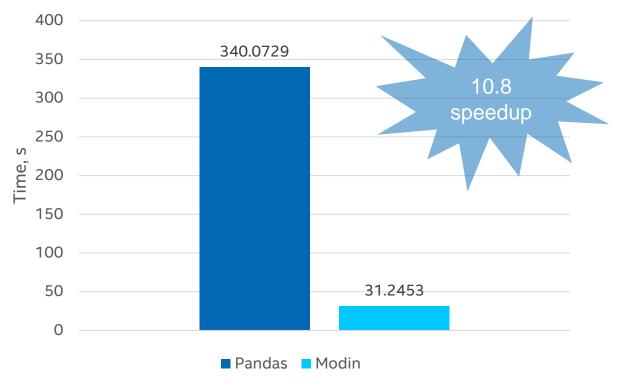
Modin

import modin.pandas as pd
import numpy as np

def run_etl():

```
def cat_converter(x):
    if x is '':
        return np.int32(0)
    else:
        return np.int32(int(x, 16))
```

```
names = [f"column_{i}" for i in range(40)]
converter= {names[i]: cat_converter for i in range(14, 40)}
```


```
count_y = df.groupby("column_0")["0"].count()
```

```
return df, count_y
```

```
df, count_y = run_etl()
```

Dataset size: 2.4GB

Execution time Pandas vs. Modin[ray]

Intel[®] Xeon™ Gold 6248 CPU @ 2.50GHz, 2x20 cores

XGBoost

Gradient Boosting - Overview

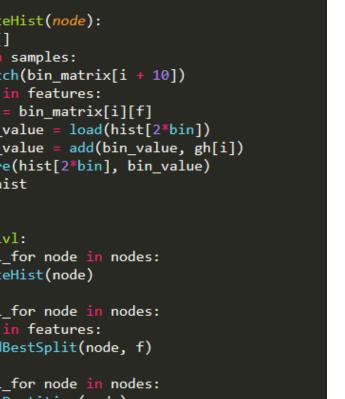
Gradient Boosting:

- Boosting algorithm (Decision Trees base learners)
- Solve many types of ML problems (classification, regression, learning to rank)
- Highly-accurate, widely used by Data Scientists
- Compute intensive workload
- Known implementations: XGBoost*, LightGBM*, CatBoost*, Intel[®] oneDAL, ...

Gradient Boosting Acceleration – gain sources

Pseudocode for XGBoost* (0.81) implementation

def ComputeHist(node): hist = [] for i in samples: for f in features: bin = bin matrix[i][f] hist[bin].g += g[i] hist[bin].h += h[i] return hist

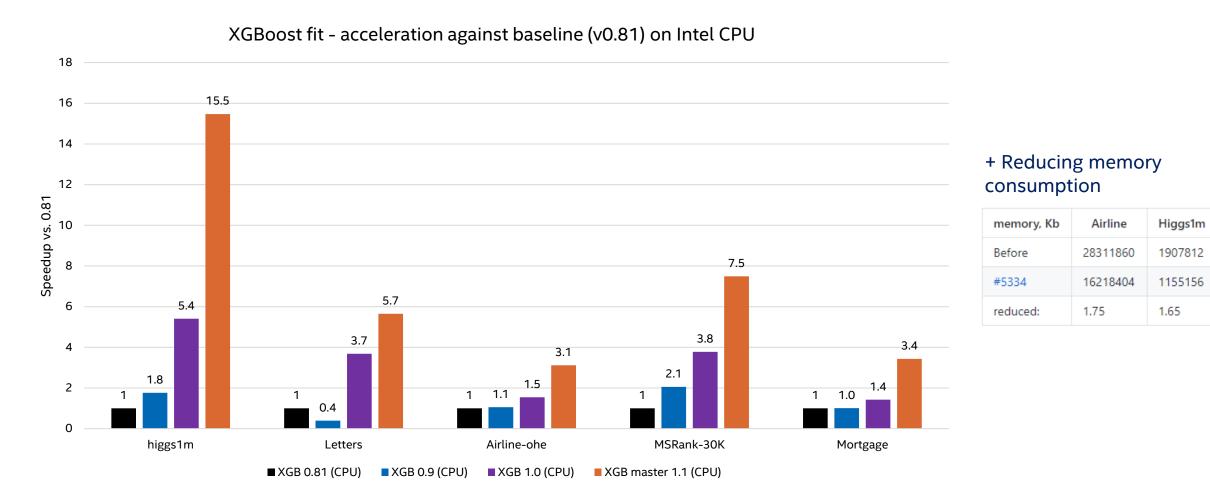

def BuildLvl: for node in nodes: ComputeHist(node)

for node in nodes: for f in features: FindBestSplit(node, f)

for node in nodes: SamplePartition(node)

Pseudocode for intel® oneDAL imp
<pre>Memory prefetching to mitigate def ComputeHist(node): hist = []</pre>
<pre>irregular memory access for i in samples: prefetch(bin_matrix[i + 10]) for f in features:</pre>
Usage uint8 instead of uint32 bin = bin_matrix[i][f] bin_value = load(hist[2*bin]) bin_value = add(bin_value, gh[i]) store(hist[2*bin], bin_value)
SIMD instructions return hist instead of scalar code
Nested parallelism ComputeHist(node)
Advanced parallelism, reducing seq loops for f in features:
Usage of AVX-512, vcompress instruction (from Skylake)
in Intel [®]

Pseudocode for Intel[®] oneDAL implementation


Training stage

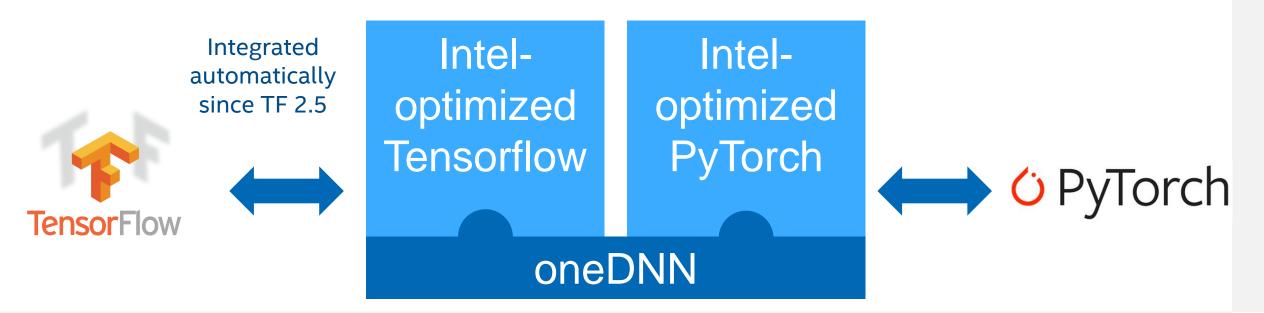
Moved from Intel® Legend: oneDAL to XGBoost (v1.3)

Already available DAAL, potential optimizations for XGBoost*

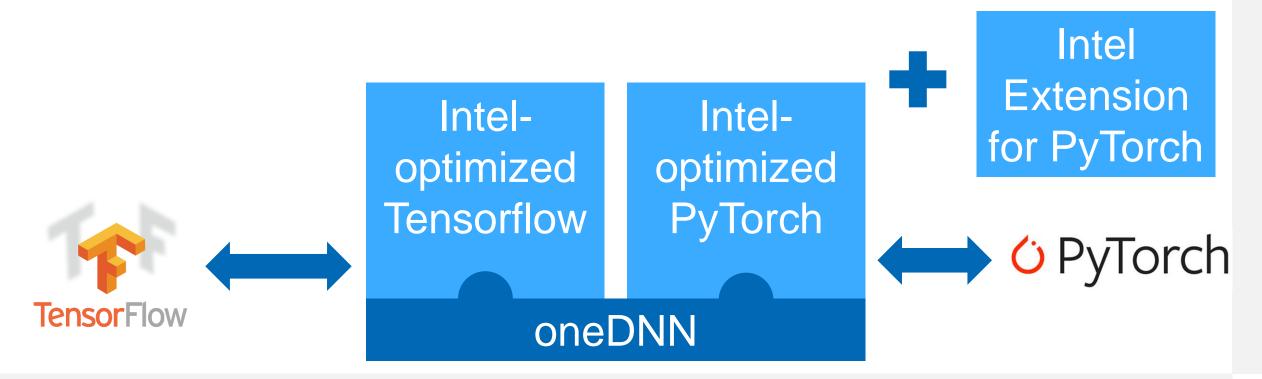
> intel 23

XGBoost* fit CPU acceleration ("hist" method)

CPU configuration: c5.24xlarge AWS Instance, CLX 8275 @ 3.0GHz, 2 sockets, 24 cores per socket, HT:on, DRAM (12 slots / 32GB / 2933 MHz)


Deep Learning

Intel-optimized Deep Learning frameworks


Intel-optimized Deep Learning Frameworks

- Intel-optimized DL frameworks are drop-in replacement,
 - No front code change for the user
- Optimizations are upstreamed automatically (TF) or on a regular basis (PyTorch) to stock frameworks
 - TF: Optimizations are integrated automatically since TF 2.5 and are activated after setting up TF_ENABLE_ONEDNN_OPTS=1

Intel-optimized Deep Learning Frameworks

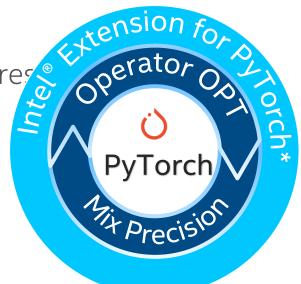
- Intel Extension for PyTorch is an additional module for functions not supported in standard PyTorch (such as mixed precision and dGPU support)
- As they offer more aggressive optimizations, they offer bigger speed-up for training and inference

Intel[®] oneAPI Deep Neural Network Library (oneDNN) Basic Information

- Features
- Training: float32, bfloat16⁽¹⁾
- Inference: float32, bfloat16⁽¹⁾, float16⁽¹⁾, and int8⁽¹⁾
- Runs on Intel CPU and GPU

	Intel [®] oneDNN		
Convolution	2D/3D Direct Convolution/Deconvolution, Depthwise separable convolution 2D Winograd convolution		
Inner Product	2D/3D Inner Production		
Pooling	2D/3D Maximum 2D/3D Average (include/exclude padding)		
Normalization	2D/3D LRN across/within channel, 2D/3D Batch normalization		
Eltwise (Loss/activation)	ReLU(bounded/soft), ELU, Tanh; Softmax, Logistic, linear; square, sqrt, abs, exp, gelu, swish		
Data manipulation	Reorder, sum, concat, View		
RNN cell	RNN cell, LSTM cell, GRU cell		
Fused primitive	Conv+ReLU+sum, BatchNorm+ReLU		
Data type	f32, bfloat16, s8, u8		

(1) Low precision data types are supported only for platforms where hardware acceleration is available


29

Optimizations

- 1. <u>Operator optimizations</u>: Replace default kernels by highlyoptimized kernels (using Intel[®] oneDNN)
- 2. <u>Memory layout optimizations:</u> set optimal layout for each kernel, while minimizing memory changes in between kernels
- 3. <u>Graph optimizations</u>: Fusion, Layout Propagation

Intel[®] Extension for PyTorch* (IPEX)

- Buffer the PRs for stock Pytorch
- Provide users with the up-to-date Intel software/hardware feature
 Streamline the work to integrate one DNN
- Streamline the work to integrate oneDNN
- Unify user experiences on Intel CPU and GPU

- Customized operators
- > Auto graph optimization

₩ Mix Precision

- ➢ Accelerate PyTorch operator by LP
- Simplify the data type conversion

Optimal Optimizer

Split Optimizer (e.g., split-sgd)Fused Optimizer

Ease-of-Use User-Facing API (v1.10.x~)

For Float32

import torch
import torchvision.models as models

```
model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)
```

```
model = model.to(memory_format=torch.channels_last)
data = data.to(memory_format=torch.channels_last)
```

```
with torch.no_grad():
    model(data)
```


Ease-of-Use User-Facing API (v1.10.x~)

For BFloat16

```
import torch
import torchvision.models as models
```

```
model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)
```

```
model = model.to(memory_format=torch.channels_last)
data = data.to(memory_format=torch.channels_last)
```

```
with torch.no_grad():
    with torch.cpu.amp.autocast():
        model(data)
```


import torch import intel_pytorch_extension class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.conv2d = torch.nn.Conv2d(3, 5, 5) def forward(self, input): res = self.conv2d(input) return res

input = torch.randn(5, 3, 9, 9)
model = Model()
model = model.to('xpu')
input = input.to('xpu')
res = model(input)

Prior to v1.10

import torch import intel_extension_for_pytorch as ipex class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.conv2d = torch.nn.Conv2d(3, 5, 5) def forward(self, input): res = self.conv2d(input) return res input = torch.randn(5, 3, 9, 9) model = Model() model = ipex.optimize(model, dtype=torch.float32, level="01") input = input.to(memory_format=torch.channels_last) res = model(input)

v1.10

Intel Extension for PyTorch benchmark

Throughput Inference 1.8 Realtime Inference 1.6 1.4 1.2 1 Speed-up 0.8 0.6 0.4 0.2 0 SSD ResNetige ResNett 33+760 ShuffleNetur MobileNet 42 Rast R. CMN. ResNetSO OLPAN BERT-LAFRE Bert, Base 10G.77 Model architecture

Speed-up compared to stock PyTorch for Float32

Intel Neural Compressor (INC)

INC: Intel Neural Compressor

- Intel Neural Compressor is an open-source Python library to create low-precision inference solutions on popular deep-learning frameworks
- It supports quantization to BF16/INT8, pruning, knowledge distillation and graph optimizations

	Model	TensorFlow	РуТо	rch	ONNX		MXNet	
	User-Facing APIs	Quantization, Pruning, Knowledge Distillation, Graph Optimization,						
Architecture	Compressions	Quantization Post training static quantiz Post training dynamic quant Quantization-aware train	ization	Grad	Pruning magnitude pruning ient sensitivity pruning owledge Distillation		Mix Precision FP32 -> INT8/BF16 FP32 -> BF16 FP32 -> Opt Fp32	
	Auto Tuning			Tuning	Strategies			
	Backends	-	ensorFlow,	PyTorch, ON	NX Runtime, MXNet, Eng	gine		
	Hardware platforms	Intel C	PU			Intel GP	บ	

Intel[®] Neural Compressor

intel. 38

BigDL for Big Data Al

Technology Stack

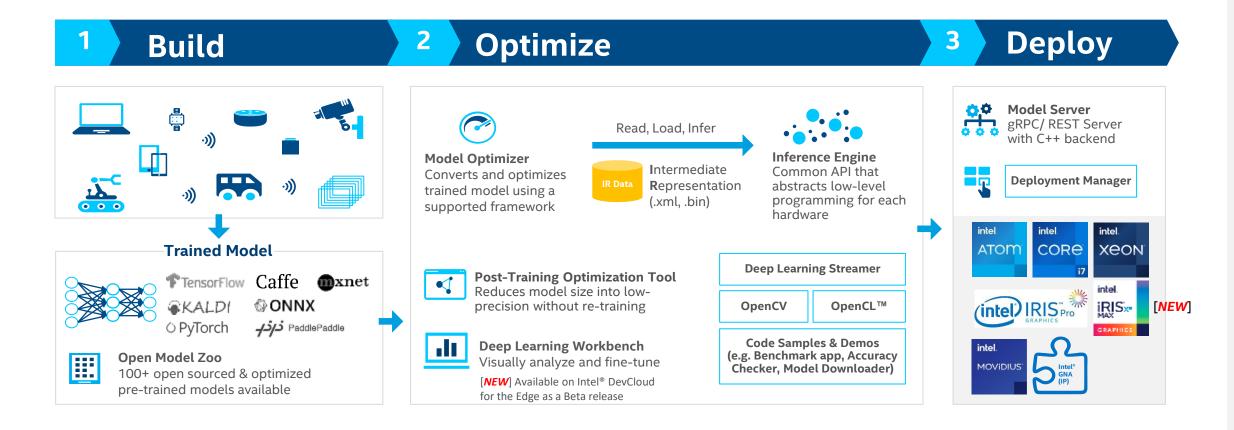
- Bringing AI to Big Data software ecosystem
- Leading with "IA differentiated" domain-specific solutions

Domain Specific	Friesian	Chronos	PPML		
<i>(Vertical)</i>	(Recommendation	(Time	(Privacy		
Solutions	System)	Series)	Preserving ML)		
End-to-End	Orca: Distributed DL				
(Horizontal)	(TF/PyTorch/OpenVINO) on Spark & Ray				
Big Data Al Pipelines	DLlib: Distributed DL library for Spark				
Laptop K8s	Cluster Had	oop Cluster	Cloud		

Value	Example Users
Rich software ecosystem for Big Data processing on IA	Mastercard, BBVA, Alibaba Cloud, Inspur, etc.
Better <i>E2E productivity and performance</i> for AI pipelines	Burger King, SK Telecom, JD.com, Midea, etc.
<i>Domain-specific AI solutions</i> for Big Data	Ant Financial, Capgemini, Mavenir, UnionPay, etc.

Value of Big Data AI Toolkit

OpenVINO


Intel[®] Distribution of OpenVINO[™] Toolkit

- Tool Suite for High-Performance, Deep Learning Inference
- Fast, accurate real-world results using high-performance, AI and computer vision inference deployed into production across Intel[®] architecture from edge to cloud

- Enables deep learning inference from the edge to cloud.
- Supports heterogeneous execution across Intel accelerators, using a common API for the Intel[®] CPU, Intel[®] Integrated Graphics, Intel[®] Gaussian & Neural Accelerator, Intel[®] Neural Compute Stick 2, Intel[®] Vision Accelerator Design with Intel[®] Movidius[™] VPUs.
- Speeds time-to-market through an easy-to-use library of CV functions and preoptimized kernels.
- Includes optimized calls for CV standards, including OpenCV* and OpenCL™.

Three steps for the Intel® Distribution of OpenVINO™ toolkit

Supported Frameworks

Breadth of supported frameworks to enable developers with flexibility

Supported Frameworks and Formats https://docs.openvinotoolkit.org/latest/ docs IE_DG_Introduction.html#SupportedFW Configure the Model Optimizer for your Framework https://docs.openvinotoolkit.org/latest/ docs MO_DG_prepare_model_Config_Model_Optimizer.html

Model Optimization

Breadth of supported frameworks to enable developers with flexibility

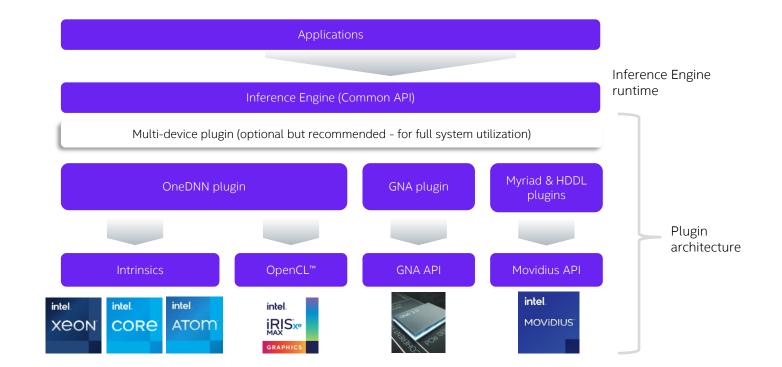
Model Optimizer loads a model into memory, reads it, builds the internal representation of the model, optimizes it, and produces the Intermediate Representation.

Optimization techniques available are:

- Node merging
- Horizontal fusion
- Batch normalization to scale shift
- Fold scale shift with convolution
- Drop unused layers (dropout)

Note: Except for ONNX (.onnx model formats), all models have to be converted to an IR format to use as input to the Inference Engine

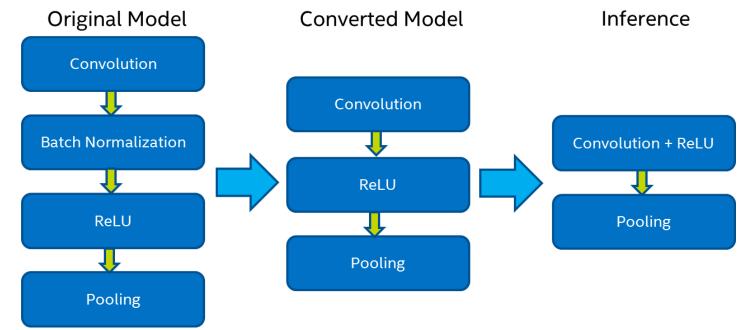
.xml – describes the network topology.bin – describes the weights and biases binary data

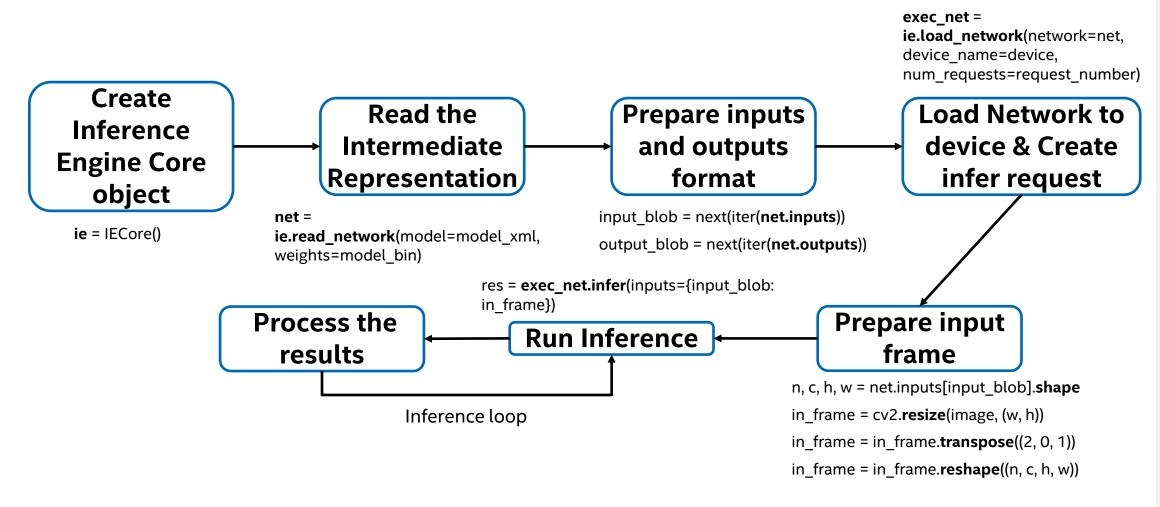

Optimal Model Performance Using the Inference Engine

Core Inference Engine Libraries

- Create Inference Engine Core object to work with devices
- Read the network
- Manipulate network information
- Execute and pass inputs and outputs

Device-specific Plugin Libraries


 For each supported target device, Inference Engine provides a plugin — a DLL/shared library that contains complete implementation for inference on this device.


GPU = Intel CPU with integrated graphics/Intel® Processor Graphics/GEN GNA = Gaussian mixture model and Neural Network Accelerator

Model Optimizer: Linear Operation Fusing

- Example
- 1. Remove Batch normalization stage.
- 2. Recalculate the weights to 'include' the operation.
- 3. Merge Convolution and ReLU into one optimized kernel.

Common Workflow for Using the Inference Engine API

http://docs.openvinotoolkit.org/latest/_docs_IE_DG_Integrate_with_customer_application_new_API.html

Pre-Trained Models and Public Models

Open-sourced repository of pre-trained models and support for public models

Use free **Pre-trained Models** to speed up development and deployment

Take advantage of the **Model Downloader** and other automation tools to quickly get started

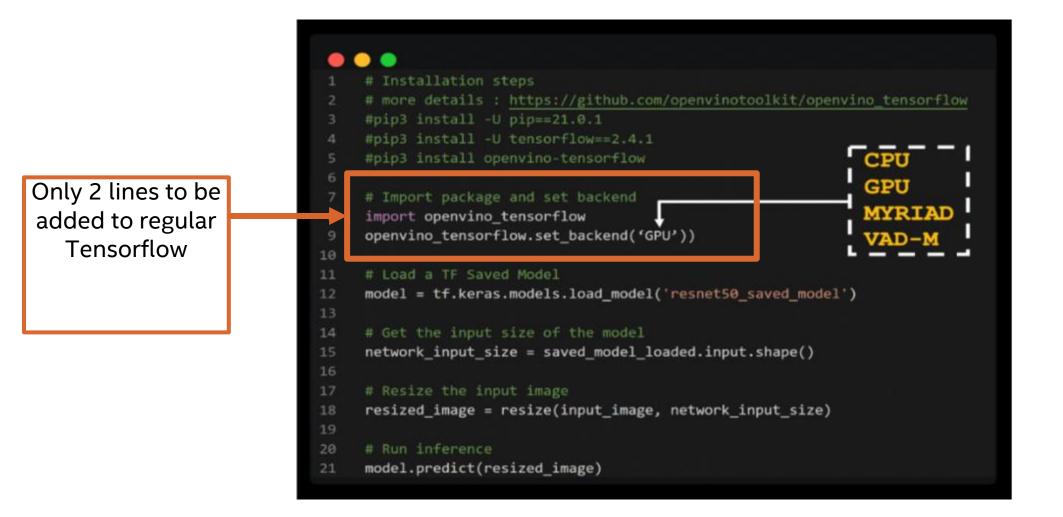
Iterate with the **Accuracy Checker** to validate the accuracy of your models

100+ Pre-trained Models *Common AI tasks*

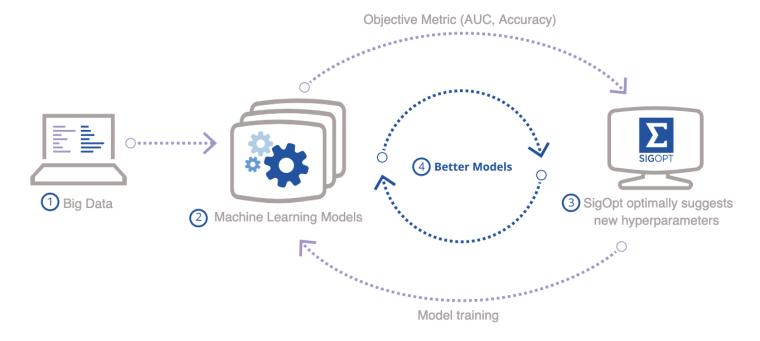
Object Detection Object Recognition Reidentification Semantic Segmentation Instance Segmentation Human Pose Estimation Human Pose Estimation Image Processing Text Detection Text Detection Text Recognition Text Spotting Action Recognition Image Retrieval Compressed Models Question Answering **100+ Public Models** *Pre-optimized external models*

Classification Segmentation Object Detection Human Pose Estimation Monocular Depth Estimation Image Inpainting Style Transfer Action Recognition Colorization

OpenVINO as execution provider


You can use OpenVINO Inference Engine as backend of other DL Inference Frameworks such as Tensorflow or ONNX Runtime

 Benefit: the advantages of OpenVINO (multiple HW support and acceleration) in your favorite framework


OpenVINO[™] Integration with TensorFlow*

SigOpt

- SigOpt is the only experimentation platform that brings together:
 - Bayesian-based hyperparameter optimization tuning (including multi-metric optimization)

And experiment management

ance v	Projects / tf-mnist-07 / Runs / tf-mnist-07 20 Status complete Runtime 31 seconds 	20-07-21 11:32:33				
ation Admin	Tags +					
ients 5	Performance -					
LINKS (2* :S :ch :ces		accuracy				
if Service @sigopt.com ⊠	Metrics		Basic Info	Basic Info		
	Name	Value	Run ID	18202		
	accuracy	0.7621999979019165	Project ID	tf-mnist-07		
			Model Type	Multi Layer Perceptron		
			Created	2 days ago		
			Creator	Nicki Vance		
	Optimization This run was not optimized. Create a hyperparameter optimization experiment with sigopt optimize in the terminal, or use the %%optimize magic command in a notebook.		Parameter Value	S		
				Value		
				100		
				5		
			log_learning_rate	-3		

Example code

Questions?

#