V irtual R esearch E nvironment

A collaborative platform to serve astro-particle communities

<u>Elena Gazzarrini</u>, Alba Vendrell Moya, Enrique Garcia, Agisilaos Kounelis, Domenic Gosein, Xavier Espinal

Challenges of today

Astro-particle physics communities around the world are quickly increasing **storage** and **CPU** needs, and scientific collaborations are growing.

TECHNOLOGY	SCIENCE	
exabyte scale needs	more interest in collaboration	
unified way of sharing data and software	cross-disciplinary research	

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

DISK space (EB)

Annual CPU consumption (MHS06years)

Year

The Virtual Research Environment is a collaborative analysis platform where researchers from various scientific communities are able to develop and share end-to-end workflows, having access to all the digital content needed to produce a scientific result in compliance with FAIR principles.

Yes! A place to run an end-to-end workflow.

Generation and simulation of events

Experimental data

Yes! A place to run an end-to-end workflow.

Yes! A place to run an end-to-end workflow.

Yes! A place to run an end-to-end workflow.

Interpretation of results

- Combination of results and
- comparison across

Yes! A place to run an end-to-end workflow.

Interpretation of results

Combination of results and comparison across

Preservation of analysis

For later reuse or reanalysis

Yes! A place to run an end-to-end workflow.

ACAT Track 1 - 26.10.2022 Nature 533, 452–454 (2016). https://doi.org/10.103 The Virtual Research Environment - E. Gazzarrini

Preservation of analysis

For later reuse or reanalysis

Yes! A place to run an end-to-end workflow.

Authentication & Authorization

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

CPU cluster

ESCAPE Data Lake -10.1051/epjconf/202125102056

- data access and transfer with gsiftp, http(s), and xrootd protocols

ESCAPE Data Lake -10.1051/epjconf/202125102056

- experiments dump data... scientists fish data
- data access and transfer with gsiftp, http(s), and xrootd protocols

- data access and transfer with gridFTP, HTTP(S), and Xrootd protocols

Authentication & Authorization

Storage

User interface

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

jupyter

DATA LAKE AS A SERVICE

- hides complexity of Data Lake scientists browse data
- pre-installed software
- run preliminary analysis
- send batch/parallel jobs to compute cluster (no need of local file copy)

Authentication & Authorization

- parallel job submission to heterogeneous resources: cloud computing and HPCs
- managed by external applications
- connected to re-analysis platform
- supports slurm, K8s, HTCondor

Context: EOSC-Future

European Open Science Cloud project to demonstrate the use of collaborative tools within astro-particle research (2 Science Projects). Science driver for other communities.

SCIENTIFIC MOTIVATION

Why is the VRE useful to the astro-particle physics community?

Science Project 1: Dark Matter

 \rightarrow Galaxy rotation curves --> a larger amount of gravitational mass is expected to exist in the universe.

- \rightarrow It does not interact with the electromagnetic filed and *cannot therefore be seen*.
- \rightarrow Many DM candidates. Many experiments target the problem. Many different research approaches.

Expected outcomes

Objective is to collect all the digital objects + workflows in a cohesive way, output combined plots and provide an interdisciplinary open science example from bottom-up effort

The Virtual Research Environment - E. Gazzarrini

Science Project 2: Extreme Universe

→ Multi-messenger astronomy (i.e. EM radiation, GW, neutrinos, cosmic rays are created by different astrophysical processes, and thus reveal different information about their sources)

INPUT DATA	Binary Neutron Star Merger	Active Galactic Nuclei	Core-Collapse Supernovae
STUDY	 GW Fast Radio Bursts Broadband follow ups 	multi wavelength observations	NeutrinosGW
EXPERIMENT	((O)) VIRGD	FermiLAT	

WHAT IS NEEDED?

To create a collaborative platform, useful for the sciences?

Data Lake

a cluster of virtual resources to manage storage elements, user subscriptions and monitoring of all data operations

Data Lake

a cluster of virtual resources to manage storage elements, user subscriptions and monitoring of all data operations

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

Data Lake

a cluster of virtual resources to manage storage elements, user subscriptions and monitoring of all data operations

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

REANA: A System for Reusable Research Data Analyses - 10.1051/epjconf/201921406034

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

REANA: A System for Reusable Research Data Analyses - 10.1051/epjconf/201921406034

Data Lake

a cluster of virtual resources to manage storage elements, user subscriptions and monitoring of all data operations

Data Lake as a Service

Jupyterhub to run preliminary analysis + Reana client to dispatch jobs to remote cluster

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

REANA: A System for Reusable Research Data Analyses - 10.1051/epjconf/201921406034

Data Lakea cluster of virtual resources to managestorage elements, user subscriptions and
monitoring of all data operationsImage: CernVM
File systemImage: CernVM
GitLabImage: CernVM
GitLab

+ Reana client to dispatch jobs to remote cluster

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

REANA: A System for Reusable Research Data Analyses - 10.1051/epjconf/201921406034

Data Lakea cluster of virtual resources to managestorage elements, user subscriptions and
monitoring of all data operationsImage: CernVM
File systemImage: CernVM
GitLabImage: CernVM
GitLab

+ Reana client to dispatch jobs to remote cluster

The Virtual Research Environment - E. Gazzarrini

Data Lake

a cluster of virtual resources to manage storage elements, user subscriptions and monitoring of all data operations

Data Lake as a Service Jupyterhub to run preliminary analysis +

Reana client to dispatch jobs to remote cluster

webpage

Dark Matter

Dark Matter studies at LHC

Virtual Research Enviroment

A COLLABORATIVE ONLINE PLATFORM WHERE SCIENCE PROJECTS ARE ABLE TO DEVELOP AND SHARE END-TO-END ANALYSIS WORKFLOWS, HAVING ACCESS TO ALL THE DIGITAL CONTENT NEEDED TO PRODUCE A SCIENTIFIC RESULT IN COMPLIANCE WITH FAIR PRINCIPLES.

Dark Matter

ESCAPE & EOSC FUTURE SCIENCE PROJECT

Extreme Universe

ESCAPE & EOSC FUTURE SCIENCE PROJECT

he Standard Model (SM). If such interactions exist, DM particles could be produced detector, so we would have to observe them in association with visible SM

VRE supporting workflows

VRE supporting workflows

VRE supporting workflows

AN EXAMPLE USE CASE ATLAS Dark Matter reinterpretation analysis

DM@LHC with ATLAS

- 1. Dark Matter Reinterpretation: setting limits on High-Luminosity LHC contraints on $Z' \rightarrow \chi \chi$
 - (Z' mediated Dark Matter models).
- 2. The **dilepton** inclusive search (right) concluded in 2019

a. objective: projecting limits to 14 TeV and computing the fiducial cross-sections in **lower mass regions.**

Upper Limit

EOSC Future

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

m_{ee} [GeV]

Dilepton Inclusive Search. Results of this analysis demonstrate good agreement with SM predictions.

Fom Jared Little's presentation.

Demo workflow

- 1. **Docker environment** in DataLake-as-a-service (ROOT installed)
- 2. Rucio extension to browse data
- 3. Preliminary analysis on notebooks
- 4. Job submission to **Reana cluster** (data directly from Rucio to Reana)
- 5. Generating **plots**

Server not running

Your server is not running. Would you like to start it?

Launch Serve

LINK: <u>https://youtu.be/hvlJLo_7xXc</u>

egazzarr

C+ Logout

ACAT Track 1 - 26.10.2022 The Virtual Research Environment - E. Gazzarrini

NODE

NODE

DataLake-as-a-Service

Reana file

1	version: 0.8.1	Par
2	inputs:	
3	directories:	Workflow controller
4	- python/ T	
5	workflow:	\bigcirc
6	type: serial	
7	specification:	
8	steps:	
9	- name: fetchdata-rucio	+ +
10	voms_proxy: true	
11	rucio: true	
12	<pre>environment: 'projectescape/rucio-client'</pre>	(3)
13	commands:	¥ ¥
14	- rucio whoami	
15	 rucio get ATLAS_LAPP_SP:DMsmary.dileptonReinterpretat 	
16	- name: SetLimits	\setminus /
17	environment: 'reanahub/reana-env-k_t6:6.18.04'	<u>**</u>
18	<pre>compute_backend: kubernetes</pre>	
19	kubernetes_memory_limit: '9Gi'	
20	commands:	A
21	- mkdir plots/	
22	- python python/MakeLimit.py	
23	outputs:	Shared storage
24	directories:	
25	- plots/	
		NIEC

Improvements

- How to evaluate **performance**?
- Better **resource usage** monitoring!
- **Network** overhead for data transfer
- **Plugins** on jupyterhub
- Authentication through tokens not yet fully supported

- Useful!
 - around 10 scientists from ATLAS, Virgo, CTA, Km3Net, FermiLat, Darkside, LOFAR have tested workflows successfully and have provided positive feedback
 - jupyter interface for exploratory analysis

- Useful!
 - around 10 scientists from ATLAS, Virgo, CTA, Km3Net, FermiLat, Darkside, LOFAR have tested workflows successfully and have provided positive feedback
 - jupyter interface for exploratory analysis
- Independent
 - of local storage through Reana-Rucio connection
 - of restrictions on CERN resources

- Useful!
 - around 10 scientists from ATLAS, Virgo, CTA, Km3Net, FermiLat, Darkside, LOFAR have tested workflows successfully and have provided positive feedback
 - jupyter interface for exploratory analysis
- Independent
 - of local storage through Reana-Rucio connection
 - of restrictions on CERN resources
- Abstraction
 - Docker

- Useful!
 - around 10 scientists from ATLAS, Virgo, CTA, Km3Net, FermiLat, Darkside, LOFAR have tested workflows successfully and have provided positive feedback
 - jupyter interface for exploratory analysis
- Independent
 - of local storage through Reana-Rucio connection
 - of restrictions on CERN resources
- Abstraction
 - Docker
- Heterogeneous
 - Various resources as workflow back-end
- Flexible
 - ad-hoc workflows can be created via easily editable declarative files

Thank you! Questions? Advice?

E-mail
elena.gazzarrini@cern.ch
VRE website
https://escape2020.pages.in2p3.fr/virtual-environment/home/
Where to find me
CERN Meyrin site, room 513-1-014

Back-up slides

References

- <u>Rucio</u>
- <u>Rucio Escape WebUI</u>
- <u>K8s cluster CI/CD Helm + Flux configurations</u>
- <u>Cluster testing</u>
- <u>Grafana monitoring</u>
- <u>VRE webpage</u> (in progress)
- VRE documentation
- <u>VRE onboarding</u>
- VRE scientific analyses + docker images for notebooks

Rucio infrastructure

Server overview

Networking overview

CI/CD cycle

The DataLake-as-a-Service (DLaaS)

- between users, cleaned

How to use it

1. Add secrets through terminal command line

\$ reana-client secrets-add

- --file userkey.pem --file usercert.pem
- --env VOMSPROXY_PASS=xxx
- --env **VONAME**=escape
- --env RUCIO_USERNAME=xxx

Sorry, you still need your X509 certificate.. But no need to execute the 'voms-proxy-init' command!

How to use it

2. Set voms_proxy & rucio to TRUE in .yaml file

steps:

- name: fetchdata

voms_proxy: true

rucio: true

How to use it

3. Docker environment and execute Rucio commands

steps:

- name: fetchdata voms_proxy: true rucio: true environment: 'reanahub/reana-env-rucioclient:latest' commands: - rucio get DID_name && rucio upload DID_name

DEMO time!

```
workflow:
 type: serial
 specification:
   steps:
     – name: fetchdata
       voms_proxy: true
       rucio: true
       environment: 'projectescape/rucio-client'
       commands
       - rucio get agis_test:fitdata.C agis_test:gendata.C
     – name: gendata
       environment: 'reanahub/reana-env-root6:latest'
       kubernetes_memory_limit: '256Mi'
       commands
       - mkdir -p results && root -b -q 'agis_test/gendata.C(${events},"${data}")'
     - name: fitdata
       environment: 'reanahub/reana-env-root6:latest'
       kubernetes_memory_limit: '256Mi'
       commands:
       - root -b -q 'agis_test/fitdata.C("${data}","${plot}")'
     - name: uploaddata =
       voms_proxy: true
       rucio: true
       environment: 'projectescape/rucio-client'
       kubernetes_memory_limit: '256Mi'
       commands:
       - rucio upload --scope agis_test results/plot.png --rse EULAKE-1
```


ATLAS Dark Matter Reinterpretation - Dilepton Resonance

1. Import files as variables into notebook

SRUCIO	➡ Hyy_ana.ipynb × ■ dilepton_test.ipynb × ■ elena_test.txt × ■ Terminal 1 × ■ run	n_re
2ROCIO		
EXPLORE NOTEBOOK	[1: axial_ee, axial_mumu, limit_intepol	
ATTACHED DIDS	<pre>[12 (/eos/eulake_1/ATLAS_LAPP_SP/9d/f2/DMCrossSectionGraphs_axial_ee.root, /eos/eulake_1/ATLAS_LAPP_SP/58/50/DMCrossSectionGraphs_axial_mumu.root, /eos/eulake_1/ATLAS_LAPP_SP/23/c7/LimitInterpolator_CL95_14TeV_root)</pre>	
ATLAS_LAPP_SP:DMCrossSectionGraphs_axial_ee.root axial_ee	[9]: import ROOT import gfal2	
ATLAS_LAPP_SP:DMCrossSectionGraphs_axial_mumu.root axial_mumu X	<pre>s]: type(axial_ee)</pre>	
ATLAS_LAPP_SP:LimitInterpolator_CL95_14TeV.root limit_intepol	<pre>[13]: rucio_jupyterlab.kernels.ipython.types.SingleItemDID</pre>	
	<pre>[11]: def GetInteg(histo): return histo.Integral()</pre>	
	<pre>def getDMCrossSection(medType):</pre>	
environment is already	<pre>outfilename = "DMCrossSectionGraphs_" + medType outfile = ROOT.TFile("./output/"+outfilename+".root","recreate") # outtuple = ROOT.TNtupleD("xsecTuple", "xsecTuple", "mass:width:massDM:xsec_truth:xsec_acc:acc")</pre>	
spawned	<pre>mgAcc = R00T.TMultiGraph() mgXsec = R00T.TMultiGraph() mgEidXsec = R00T_TMultiGraph()</pre>	

2b. REANA automatises workflow execution

+ 🗈	± C	a Terminal 1 × ≣ reana.yaml × ≣ runR
Filter files by nam / dileption_jared reinterpretation /	ne Q / atlas-dm-	<pre>1 version: 0.8.1 2 inputs: 3 directories: 4 - python/ 5 - data/ </pre> notebooks python README.md reana.yaml runReana.sh jovyan@jupyter-egazzarr:~/dileption_jared/atlas-dm-reinter => Verifying REANA specification file /home/jovyan/dileption/
Name 🔺	Last Modified	6 files: -> SUCCESS: Valid REANA specification file.
notebooks	2 minutes ago	7 - python/MakeLimit.py ==> Verifying REANA specification parameters
python	2 minutes ago	9 - data/DMCrossSectionGraphs_axial_massmass.root -> SUCCESS: REANA specification parameters appear valid.
README	3 minutes ago	<pre>10 - data/LimitInterpolator_CL95_14TeV.root ==> Verifying workflow parameters and commands</pre>
Y: reana.yaml	2 minutes ago	12 type: serial -> SUCCESS: Workflow parameters and commands appear value
runReana.sh	a minute ago	<pre>specification: steps: - name: SetLimits environment: 'reanahub/reana-env-root6:6.18.04' compute_backend: kubernetes kubernetes_memory_limit: '9Gi' commands: - mkdir plots - python python/MakeLimit.py outputs: directories: - plots/</pre>

Filter files by name

Name

/ dileption_jared / output /

% Crossing_DM0p50_fsll.pdf

Scrossing_DM1p00_fsll.pdf

% Crossing_DM1p50_fsll.pdf

Scrossing DM2p00 fsll.pdf

Mass Z'