
Speeding up CMS simulations, 
reconstruction and HLT code using 

advanced compiler options
N. Forzano (CERN), V. Innocente (CERN), V. Ivantchenko 
(CERN/Princeton), S. Muzaffar (CERN), D. Piparo (CERN)

ACAT 2022



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

CMS Central Data Processing Workflows: Small Recap
● Generation: creation of events of a type from a Monte Carlo Generator (e.g. Pythia, MadGraph, Sherpa …)
● Simulation: transform gen particles into simulated hits in the CMS detector. The tool used is Geant 4, hybridated 

with some detector specific fast simulation techniques (e.g. Russian Roulette for neutrons, parametrized 
forward showers)

● Digitization: transform sim hits into the response the detector would have had in presence of such energy 
depositions. In simulation, runs virtually always coupled to Pileup mixing.

● Pileup mixing: overlay a “pileup only” event to the hard scatter, reading it from a “Pileup library” which is a CMS 
dataset (typically placed at FNAL or CERN, accessing it through XRootD remote reads)

● HLT: Runs on data at Point 5 and can be emulated offline. A differently configured, extremely fast 
reconstruction to decide what events are interesting and why (i.e. according to which “trigger path)” 

● Reconstruction: common to simulation and data. Transform digi output in collection of high level objects, e.g. 
particles (photons, electrons, muons, jets etc.)

● MiniAOD/NanoAOD: common to simulation and data. Creation of analysis formats from reconstructed events

Notes:

● CMS can go from gen to reco in one single step, called “Fast Monte Carlo Chain”, >much faster than the high 
fidelity Geant 4 based simulation + reconstruction. Simplifications are used all over the places.

● All gen-sim-digi/mix-reco-mini/nanoAOD creation steps in production happen through subsequent jobs landing 
on the same node, leaving intermediate datasets on the local disk (not all intermediate tiers are stored centrally, 
nor moved anywhere else. This approach is called in jargon “Step-chain Monte Carlo”

2



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

CMS O&C Strategic Goals
Efficiently use all of the resources available to us, while

● Minimizing computing resource needs

● Maximizing throughput

● Minimizing job failures

● Minimizing manual operations (effort)

● Datasets requests are completed in short, predictable amounts of time (not completely under 

the control of O&C)

3



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

Why More Throughput?
● We must make efficient use of computing resources: this includes compute capacity
● Faster code means more flexibility: to schedule jobs, to plan sample production, to incorporate 

a last minute necessary feature boosting discovery potential if needed
● A powerful measure against scarcity
● One way of obtaining throughput increase: “technical improvements”, e.g. smarter usage of 

compilers

4

From CMS-NOTE-2022-008 and 
CMS O&C Public Results page

Projected CPU capacity needed by CMS in 
Run 4 and Run 5. Source: EMBER Data Explorer

https://cds.cern.ch/record/2815292?ln=en
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://ember-climate.org/data/data-explorer/


D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

Link Time and Profile Guided Optimization (LTO & PGO)

● Two strategies to reduce application runtime, both relying on the compiler
○ No algorithmic or implementation changes, a “technical improvement”

● LTO: instrument compilation units with metadata, consulted to optimize when 
building shared objects

○ Expands the scope of inter-procedural optimizations to encompass everything that is visible at 
link time

● PGO: implies two compilation passes and one execution
○ Build instrumented binaries, produce a profile of the application, re-build from sources+profile
○ Inlining, block ordering, register allocation, conditional branch optimization, virtual call 

speculation, etc.

● Executive summary: 
○ LTO has immediate benefits for all CMS applications: 2-3% speedup
○ PGO is effective for all flavours of sim, HLT and reco just by profiling a few processes
○ LTO and PGO improvements are almost uncorrelated, combined are worth ~10% speedup
○ Nothing CMS specific in the procedure followed: is there potential for other experiments?

5



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

Testbed and Results Description
● AMD EPYC 7302 16-Core Processor, exclusive usage

● GCC 10.3.0

● CMSSW_12_X cycle (2022 data taking release), Geant 4 10.7.2

● Improvements measured on event loop (thousands of events)

● Run 2 PU conditions

● CMS specific code re-built entirely. For sim tests, Geant 4 and VecGeom as well.

● PGO profiles obtained in sequential mode. If MT active, internal locks in instrumented binaries 

make runtime substantially identical.

● Improvements measured to be identical in sequential and MT mode using all cores

● Flags:
○ LTO: -flto -fipa-icf -flto-odr-type-merging -fno-fat-lto-objects –Wodr

○ PGO: -Wno-error=maybe-uninitialized and 1st pass -fprofile-generate=profile-dir, 2nd pass -fprofile-use=profile-dir 

–fprofile-correction 

6

https://www.amd.com/en/product/8821


7

Simulation Based on Geant 4



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

One process to optimize them all
● LTO: choose TTBar simulation. Runtime reduction: 3.2 %
● PGO: Need to verify that the profile generated with process_1 can also optimize process_X
● Representative set of standard candles was chosen, a matrix was built

○ Build binaries with profiles obtained with a process_1 and run process_2

Partial bottomline: 

● The profile generated with TTBar & Run 3 detector is enough to optimize for all processes
○ Even using Run 3 detector profiles for the Phase-2 detector workflow!

● PGO (TTBar & Run 2 detector) + LTO are worth 10% of the simulation runtime
8



9

Offline and Online Reconstruction



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

High Level Trigger and Offline Reconstruction

● HLT and Offline Reconstruction: same code base
○ Different parameters, local VS global, some algorithms used exclusively in one of the two 

flavours (e.g. production of pixel-only tracks)

● Very different set of modules for Run 3 and Phase-2 processing 
○ Reflect the upgrade of the detector (E.g. HGCal, MTD subdetectors)

○ Not the case for the simulation of the passage of particles through matter

● Runtime performance of reconstruction is a priority for CMS
○ Key aspect for a successful Run 3 and Phase-2 upgrade

○ Aspirational -10%/y, achieved (and then some) in the last 3 years

10



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

Building the “Reco and HLT Matrix”

● Approach inspired from simulation: select primary datasets (events selected by the same 
set of triggers) instead of generator processes

● Runtime reduction
● LTO: 1.7% Reco and 2.7% HLT - PGO+LTO: 9.4% Reco and 10.5% HLT

○ PGO alone: ~7% in both cases

● As for simulation, one flavour of events seems adequate to produce profile for all of 
them

○ Somewhat smaller speedup when crossing online/offline and Run 3/Phase-2 boundaries (expected)

11

Simplified processes description - JetHT: high Pt events, MET: high MET events, Phase-2: TTBar 200 PU, HLT: standard set of 
unbiased events used to profile online reconstruction



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

Profile creation and measurement after LTO+PGO
● The “saturation” of the PGO optimization level was studied

○ A few tens of events are enough to reach max speedup

● Complete analysis of performance counters performed with perf

● Less instructions loaded, less *misses

12

https://perf.wiki.kernel.org/index.php/Main_Page


13

Putting It All Together



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

Merging Profiles
● Profiling time: 

○ Run 3 Sim, Reco, HLT 1h:30m

○ Phase-2 Sim, Reco: 3h:30m

● Straightforward: gcov-tool worked out of the box to merge 5 profiles directories into one

● Use that directory to instruct GCC to rebuild CMS specific code as well as Geant 4

○ A solid 10% speedup gained across the board

14

https://gcc.gnu.org/onlinedocs/gcc/Gcov-tool-Intro.html


D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

Status of LTO and PGO in Production

● LTO: applied to all CMS libraries and Geant 4
○ Campaign ongoing to fix all warnings
○ Will be validated in terms of physics results (nothing should change, but need to check)
○ Target: CMSSW release cycle 13_X, intended for 2023 data taking 

● PGO: a substantial change in the build process. Working on an optimal 
deployment strategy considering

○ Limitations of the building infrastructure
○ Frequency of profile production: 2x day, 1x week?
○ Prioritization: simulation or reconstruction? Phase-1 or Phase-2?
○ Developer experience: tooling to transparently trigger PGO for everybody? Only for central 

builds?
○ 8% speedup on top of LTO is worth some thinking!

15



16

Conclusions



D. Piparo (CERN) - ACAT 2022 - Speeding up CMS simulations, reconstruction and HLT code using advanced compiler options

Conclusions

● Technical improvements, such as advanced compiler flags and optimizations, 
are a powerful tool to speed up HEP code

● CMS investigated Link Time Optimization and Profile Guided Optimization
○ For simulation, reconstruction (Run 2 and Phase-2) and HLT (Run 2)

● LTO: 2-3% speedup for sim, reco and HLT, just adding flags
● PGO: additional ~8% speedup for all processing types studied

○ Five workflows seem to be enough to produce profiles to optimize all workflows
○ A few tens of events are enough to produce complete profiles
○ Merging profiles is straightforward

● Processing throughput increase reflected by low level quantities measured via 
performance counters

○ E.g. # cache misses, # instruction load/stores

● LTO and PGO are experiment independent optimizations (just requires a good 
compiler) 

17


