A cloud-based computing infrastructure for the HERD cosmic-ray experiment

Diego Ciangottini, Matteo Duranti, Valerio Formato, <u>Nicola Mori</u>, Daniele Spiga

ACAT 2022 – Bari (IT) - 25th October 2022

Introduction

• HERD: space-based cosmic-ray direct detection experiment

- To be installed in 2027 on the forthcoming Chinese Space Station
- International collaboration led by Chinese institutions with a strong European component (mostly Italian)

• Currently in advanced design and prototyping stage

- Possibility to start developing code and computing model from scratch

• Facts about computing models for cosmic-ray experiments:

- Exp. "size" << LHC
 - "Easy", but...
- High demand of raw computing power in some scenarios
 - E.g. upper energy limit for MC simulations in the PeV region
- Difficulties in exploiting some computing optimization techniques
 - E.g. optimized workloads like fast MC simulations may not be suitable for assessing the e/p rejection power with sufficient accuracy
 - Small community with relatively little manpower to devote to this topic
- Highly dynamic use of computing resources (short-period bursts)
 - Due to e.g. small number of involved people leading to significant usage fluctuations

Introduction

- The cloud can provide some solution:
 - Add/remove resources with minimal overhead to dynamically cope with high/low demand periods
 - Efficiently exploit opportunistic resources with cloud-native solutions
 - Deploy self-hosted, self-managed services

• The computing model must be designed to fully profit of the cloud

- E.g. to maximize the usage of opportunistic resources by minimizing the set-up period after the resources are made available in the cloud
- Towards a fully-cloud based model for HERD:
 - R&D and prototyping work
 - Based on INFN Cloud infrastructure and resources

Overview

Overview

- Single Sign On based on a dedicated INDIGO-IAM instance (IAM HERD)
- Federated with institutional SSO services directly and through EduGAIN
- OpenID Connect protocol

AuthN/Z

- S3-compatible storage based on MinIO
 - Well-established cloud storage technology
 - Available storage backends for many components (e.g. CVMFS)
- Used for data, software and services
- Testbed based on 4 MinIO instances running on Kubernetes
 - 3+1 erasure coded storage
 - 100 TB raw capacity provided via Ceph (DICE project, grant agreement ID: 101017207)
- Access control:
 - OIDC tokens managed via oidc-agent (users)
 - Access keys (services)

Data processing

- On-demand HTCondor cluster running on Kubernetes
- Local containerized clients for submitting jobs
 - Authentication on the cluster via OIDC tokens (oidc-agent)

Data processing

• Computing nodes S3 I/O via pre-signed URLs

- Retrieved at job launch using user's token and stored on the node local storage

• SW distribution via CVMFS

- S3 backend
- Automated deployment via Gitlab CI

Data processing

- Automated deployment of collaboration code to CVMFS via Gitlab CI
 - Triggered by commit on master / new release tag (x.y.z)
 - Concurrent deployment for different OSs

• The full HERD data processing chain has been successfully tested on the cloud infrastructure

- Launch script: retrieves the psURLs for all input and output files, prepares the Condor submit file and the job script, and submits the job cluster
- Simulation: based on Geant4, output file is copied on S3 with curl using a psURL
- Digitization: the job script reads the simulation input file from S3 using curl and a psURL, executes the digitization, and stores the digitized output file on S3 using a psURL
- Reconstruction: same workflow as digitization, with a digitized file as input
- Analysis: same workflow as reconstruction, with a reconstructed file as input
- No major issues encountered
- Performance still to be investigated
 - Sub-optimal storage testbed (MinIO on VMs with Ceph backend storage)
 - Single-site setup, no multi-site optimizations yet

• Open issues

- S3 access control for long-queueing/long-running jobs
 - psURLs validity currently limited to 1 week
- Distribution of user's code (CVMFS?)
 - Using HTCondor file transfer at the moment
- Integration with "conventional" pledged resources (HTCondor flocking?)

Collaboration services

- Peculiarities of the HERD collaboration:
 - Cosmic-ray experiment → no umbrella organization like CERN → no institutional services available to every collaboration member
 - Chinese institutions \rightarrow no access to free tools from e.g. Google
- Solution: self-host the needed services at collaboration level
 - The cloud approach ease this task
- Fully-containerized web applications running on cloud VMs
- SSO through IAM HERD
- Automated backup/restore to/from S3

Collaboration services

• Self-hosted services:

- Web site with restricted area (Grav 🔗)
- Calendar (NextCloud ••••)
- Document server (NextCloud ••••)
- Code repository (Gitlab 🖊)
- CI/CD (Gitlab-CI runners ₩)
- Chat (Matrix $[\mathbf{m}]$, experimental)
- Indico (maybe in future)

• Open issues

. . .

- Secrets management
 - Currently hand-managed, planning to evaluate HashiCorp Vault for automated management
- High availability (currently not an issue)

The HERD dynamic Tottown of the second secon

Web site

Calendar

	Sign in		
	Homeserver		0
	chat-server.herd.cloud.infn.it		Edit
	Sign in with	Username	~
	Username		
	Password		
	Forgot password?		
8	Sign in		
	Continue with IAM HERD		
English (US) 🗸 🗸	New? Create account		

- A fully cloud-based computation environment for the HERD cosmic-ray experiment has been successfully prototyped and tested
- The cloud can support a computing model that is more suited to cosmic-ray experiments than the pledge-based LHC ones
- The cloud offers the flexibility to self-host and manage services for the collaborations
 - Even for low-manpower ones

• Future developments

- AuthN/Z for long jobs
- Distribution of user's code
- Automated management of secrets
- Federation with pledged resources
- Usage of opportunistic resources

Thanks to the INFN Cloud

staff for help and support!

