-—

Evaluating HPX as a Next-Gen Scheduler for ATLAS on HPCs

Paolo Calafiura, Julien Esseiva, Xiangyang Ju, Charles Leggett,
Beojan Stanislaus, and Vakho Tsulaia

on behalf of the ATLAS Collaboration

= ACAT

/_Wﬂ BERKELEY LAB 24t October 2022 EA”I'%“ﬁ'é

Computing in ATLAS

@ Processed using the Worldwide LHC Computing Grid
@ Global network of large data centres contributed by institutes / countries

@ Coordinated by PanDA - splits work and submits jobs into local batch
systems
e Decides where to send work considering proximity to input data

@ Submit single node (multicore) jobs, with some single core jobs

@ On each node, scheduling handled by custom scheduler within Athena
framework

HPC Challenge

@ HEP needs High Throughput Computing, governments like to build High
Performance Computing
@ HPC centres often
e Don't like small (few node) jobs
e Increasingly focused on accelerators (GPUs, FPGAs)
e Nodes have limited / no network access to outside world
@ Want to extend Athena to schedule work over many nodes (and improve
scheduling across cores / on accelerators)

@ Dream: Ability to exploit “heterogeneous heterogeneous” resources with
multiple node types specialized for different tasks

Schematic

Traditional Grid Sites

L ' 6rid 5))

Athena Athena Athena Athena

HPC Concept

HPC Conter

Beojan Stanislaus 3

Scheduling with Ray - Raythena &

@ Use Ray to distribute events over nodes, Athena on each node

@ Ray Driver process on one node handling comms with outside world
@ Ray Actor process on each worker managing a separate Athena process
e Feeds events to Athena using the Event Service idea already in Athena

@ Mostly implemented in 2019, with inefficiencies due to merging output after
running

e Recently improved with on-the-fly merging

Next Steps
@ Replace Athena scheduler with Ray

@ HPX identified as potential alternative

https://indico.cern.ch/event/773049/contributions/3473249/attachments/1937441/3213591/miham_2019_11_05_CHEP_Raythena.pdf

Evaluating HPX

Why HPX

@ Ray APl is in Python, HPX is in C++
@ HPX can be integrated directly into Athena

@ HPX can handle both inter-node and intra-node scheduling
@ In theory, also heterogeneous

Methodology

Toy prototype schedulers using different technologies

HPX and TBB on a single node HPX and Ray across multiple nodes
e =
XV | |
\ \
\ /
\
@ Matrices are 1000x1000 @ Busy loops

@ TBB means oneTBB and the flow
graph API

HPX vs TBB (Single Node)

Throughput [events/ms]

o
Y

o
o

0.4 -

0.2

0.0

I

!

—_—

=

//

Scheduler Device
—— HPX — CPU
—— TBB e GPU

!
20

L L L L L
40 60 80 100 120
Threads

@ GPU throughput
~constant -.- CUDA
serializes

@ HPX slower to
schedule at higher
thread counts (task
dependent)

@ Both schedulers
show unexpected
behaviour at 128
threads

@ Investigating,
possibly cache
related

HPX vs Ray (Multiple Nodes)

@ Throughput levels
off at around 23

— 25.00
S| o nodes with a single
g 20001 Ray — Multiple e schedullng thread
H AT e Scheduling
& 15.00 - e u ,
Z oa ; thread can't
. 10.00 .’-’.’_, |<eep up with
nodes, resolved
T with parallel
0sof o scheduling
0zl @ Ray exhibits much
S B R e slower performance
008f
L '/
s t t t t t t t ‘ e Parallel
0 5 10 15 20 25 30 35 40 .
Nodes scheduling does

not help here

First Impressions

Positives
@ Single scheduler across cores and nodes

@ In principle, HPX appears capable of handling scheduling needed

Problems Encountered
@ Worse single-node performance than TBB

@ HPX needs compute graph expressed as functions taking and returning
futures

e Appear to be limitations to what can be wrapped in a future
@ Built in CUDA support is very limited
e Ended up using CPU tasks calling CUDA directly
@ Need to manually throttle submission into HPX to control resource use

@ Need to override default queue-per-hardware-thread scheduling policy

Next Steps / Integration into Athena

@ Summary: Not a magic bullet
e Can't say goodbye to Athena scheduler and replace it wholesale
e Teething pains with larger numbers of nodes
@ Nevertheless, viable as a TBB replacement with inter-node scheduling
capability
@ Would need to use void futures or simple EventContext futures
e Combination of HPX limitation and ease of use of API
@ Advisable to keep custom scheduler and use HPX as a “threading” layer
@ Need resource control features we currently have

Backup

HPX vs TBB (300x300 Matrices)

Throughput [events/ms]

*

5}

=)

©

o. Scheduler
—— HPX
[—— TBB
»
(]

o

_

! !
0 20 40 60 80 100 120

Threads

Perlmutter CPU Node

0S: SUSE Linux 15 SP3 x86_64

Host: HPE_CRAY_EX425 1.6.3

Kernel: 5.3.18-156300.59.87_11.0.78-cray_shasta_c
Uptime: 8 days, 23 hours, 30 mins

Packages: 1238 (rpm)

Shell: zsh 5.6

Terminal: /dev/pts/8

CPU: AMD EPYC 7763 (256) @ 2.450GHz

Memory: 24482MiB / 515316MiB

Perlmutter GPU Node

0S: SUSE Linux 15 SP3 x86_64

Host: HPE_Cray_EX235n 1.2.1

Kernel: 5.3.18-156300.59.87_11.0.78-cray_shasta_c
Uptime: 9 days, 2 mins

Packages: 1238 (rpm)

Shell: zsh 5.6

Terminal: /dev/pts/8

CPU: AMD EPYC 7763 (128) @ 2.450GHz
GPU: NVIDIA A10808 SXM4 4BGB

GPU: NVIDIA A1088 SXM4 4BGB

GPU: NVIDIA A1088 SXM4 4BGB

GPU: NVIDIA A1088 SXM4 46GB

Memory: 20154MiB / 2573086MiB

Technologies

o 4 oneAPI TBB
o 4 HPX

o Ray

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html#gs.fr26fa
https://hpx.stellar-group.org/
https://www.ray.io/

	Evaluating HPX

