
Power Efficiency in HEP
(a case between ARM and x86)

Dr. Emanuele Simili ACAT 2022 25 Otober 2022

❖ Motivations and previous work

❖ Methodology
- Available hardware
- Exporter tools & IPMI validation

❖ General tests with various workloads
- C benchmarks & compiler flags
- ATLAS full G4 simulations
- HEP-Score containers

❖ Final focus:
- Conclusions and future plans
- HEP-Score

Outline

Power Efficiency @ GidPP47:

https://indico.cern.ch/event/1128343/contributions/4787174/attachments/2412950/4129612/PowA_GridPP47.pdf

https://indico.cern.ch/event/1128343/contributions/4787174/attachments/2412950/4129612/PowA_GridPP47.pdf

❖ The power consumption of computing is coming under intense scrutiny worldwide, driven both by
concerns about the carbon footprint, and by rapidly rising energy costs.

❖ ARM chips, while widely used in mobile devices due to their power efficiency, are not currently in
widespread use as capacity hardware on the Worldwide LHC Computing Grid (WLCG).

❖ LHC experiments are increasingly able to compile their workloads on the ARM architecture (and …
GPUs) to take advantage of various HPC facilities (e.g., ATLAS, CMS).

❖ To test whether WLCG sites have scenarios where power efficiency can be improved by deploying
ARM-based hardware, the energy consumption and execution speed of identical CPU- and RAM-
intensive workloads on two almost identical machines were tested: one with an Ampere arm64 CPU,
and the other with a standard AMD x86_64 CPU.

❖ The workloads range from compiled C programs to typical HEP workloads (full ATLAS simulations
and the most recent HEP-Score containerized jobs developed for Run3).

Introduction

ScotGrid Glasgow: Emanuele Simili, Gordon Stewart, Samuel Skipsey, Dwayne Spiteri, David Britton

Special Thanks: Domenico Giordano (CERN), Gonzalo Menendez Borge (CERN), Johannes Elmsheuser (CERN)

x86_64: Single AMD EPYC 7003 series (SuperMicro)
CPU: AMD EPYC 7643 48C/96T @ 2.3GHz (TDP 300W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz
HDD: 3.84TB Samsung PM9A3 M.2 (2280)

arm64: Single socket Ampere Altra Processor (SuperMicro)
CPU: ARM Q80-30 80 core 210W TDP processor
RAM: 256GB (16 x 16GB) DDR4 3200MHz
HDD: 3.84TB Samsung PM9A3 M.2 (2280)

Available Hardware

2*x86_64: Dual AMD EPYC 7513 series Processors (DELL)
CPU: 2 * AMD EPYC 7513, 32C/64T @2.6GHz (TDP 200W)
RAM: 512GB (16 x 32GB) DDR4 3200MHz
HDD: 3.84TB SSD SATA Read Intensive

And we also have a GPU node …

We have recently purchased two almost identical machines of comparable price, one with an AMD x86_64

CPU, the other with an Ampere arm64 CPU:

And we included in the comparison a standard workernode of our Grid cluster, with 2 AMD x86_64 CPUs,

which is also comparable in price* to the machines above:

* this machine is part of a 2 unit / 4 node chassis.

Power readings are achieved by two custom scripts, which collect and export CPU, RAM and IPMI
Power metrics:

❖ The 1st script is a cron job (by root) that every 10 seconds exports IPMI power readings with a
timestamp to /tmp/ipmidump.txt (… because IPMItool requires root privileges).

❖ The 2nd script is executed by the user and it takes in the job to be benchmarked. It starts by
grabbing the IPMI readings from the dump file, attaches few more info (CPU, RAM) and appends
them to a CSV file. After 1 min. sleep (so to measure idle power), it runs the given job, and waits
another min. after the job is finished before quitting.

After the job is done, the CSV file is exported locally, processed in ROOT (time profiles plots and
power integration), and cumulative results are visualized in Excel.

In addition, all servers are running a node_exporter client, which feeds (almost) real time metrics to our
Prometheus server, which in turn feeds an extensive set of Grafana dashboards for easy visualization
and monitoring purposes.

Power Readings

x86

x86*2

arm

Site Monitoring @ vCHEP2021:

https://indico.cern.ch/event/948465/contributions/4323666/attachments/2248127/3813306/MonitoringAndAutomation_vCHEP2021.pdf

https://indico.cern.ch/event/948465/contributions/4323666/attachments/2248127/3813306/MonitoringAndAutomation_vCHEP2021.pdf

IPMI validation

Idle test (30 min.)

x86: 0.04766 kWh ~ 0.046 kWh (=0.021+0.025 kWh) → ∆ = 0.00166 kWh (= -3.5%% of IPMI reading)

arm: 0.05668 kWh ~ 0.054 kWh (=0.024+0.030 kWh) → ∆ = 0.00268 kWh (= -4.7% of IPMI reading)

Job test (x86 ~45 min. ; arm ~30 min.)

x86: 0.25729 kWh ~ 0.263 kWh (=0.128+0.135 kWh) → ∆ = 0.00571 kWh (= +2.2% of IPMI reading)

arm: 0.13418 kWh ~ 0.134 kWh (=0.064+0.070 kWh) → ∆ = 0.00018 kWh (= +0.1% of IPMI reading)

Measurements of energy consumption over a longer duration of at least 30 minutes yielded results which

were within ±5% of the values recorded via IPMI, giving us confidence in the validity of our IPMI results.

As we didn’t have the best tools, automated logging
from the external monitors was not an option:

❖ Instantaneous power was impossible to
compare, as the number changed too quickly on
the metered plugs and they almost never
matched the IPMI readings from the machine.

❖ We did an integrated measurement of the total
energy for a fixed time idle and for a complete
job - which unfortunately did not have the same
duration on both machines.

Custom benchmarks (specific purpose bits):

❖ Idle measurement (sleep)

❖ Prime number sieve (C with OMP)

❖ Large Matrix Multiplication (C with OMP) using int , float and double

HEP benchmarks (typical Grid workload):

❖ Full G4MT ATLAS Simulation (sim-digi)

❖ HEP-Score containers (CMS, ATLAS)

We have created a project in our local GitLab repo to
collect test-jobs and benchmarks that we have used
in various occasion to run tests in our Tier2 cluster.

Benchmarks

Idle Power
For this measurement we just let the machines idle for 1h, while collecting power

metrics. In order to use the IPMI exporter script, we set to execute a sleep job:

Machine threads Time (s) Time (h) Tot. Energy (kW*h)Peak Power (W) Idle (W)

x86 96 3600 01:00:00 0.083 122.0 81.8

arm 80 3600 01:00:00 0.107 125.0 103.8

Key result: the arm uses about 30% more energy than the x86 in

idle state, making I/O bound tasks slightly less power efficient on

arm than on an equivalent x86 server.

$ sleep 3600

armx86

Power profiles show that the arm

has a higher baseline, and larger

oscillations between power states,

leading to a higher average *

∆‹P› ~ 22 W

lower = better * Note: the two CPUs have a different number of physical cores !

C benchmarks

❖ Eratosthenes’ prime number sieve to find primes up to 100M
- implemented in standard C with OpenMP

- compiled with GCC 11.3 (from CVMFS)

#include <omp.h>
...
#pragma omp parallel for schedule(dynamic) reduction(+ : primes)

for (num = 1; num <= limit; num++)
{

...

#include <omp.h>
...
#define N 50000
...

#pragma omp parallel for private(i,j,k) shared(A,B,C)
for (i = 0; i < N; ++i)
{

for (j = 0; j < N; ++j)
{

for (k = 0; k < N; ++k)
{

C[i][j] += A[i][k] * B[k][j];
...

As a quick and easy set of benchmarks that fully use the CPU, we have created two small C programs with
OpenMP (Open Multi-Processing): the Eratosthenes’ prime number sieve & large matrix multiplication.

$ gcc -fopenmp -mcmodel=large -Ofast -march=znver3 \

matmult.c

$ gcc -fopenmp -mcmodel=large -Ofast -mcpu=ampere1 \

matmult.c

$ gcc –fopenmp mprimes.c

❖ Large matrix multiplication using two 50k*50k random matrices (in 3 flavours):

- 3 basic types: int (4 bytes), float (4 bytes), double (8 bytes)
- implemented in standard C with OpenMP

- compiled with GCC 11.3 & the -mcmodel=large flag

- plus a few optimization flags … (*) see next slide

arm

x86

Compiler Flags
(*)

Test Optimisation march / mcpu flag Type x86 arm arm/x86

intmatmul.c -O0 int 00:01:14 00:04:14 3.42
intmatmul.c -O3 int 00:00:07 00:00:06 0.92

intmatmul.c -O3 -arch=… march=znver3 / mcpu=ampere1 int 00:00:06 00:00:07 1.26
intmatmul.c -Ofast int 00:00:07 00:00:06 0.95
intmatmul.c -Ofast -arch=… march=znver3 / mcpu=ampere1 int 00:00:06 00:00:06 1.16

flomatmul.c -O0 float 00:01:15 00:04:29 3.59
flomatmul.c -O3 float 00:00:10 00:00:45 4.39

flomatmul.c -O3 -arch=… march=znver3 / mcpu=ampere1 float 00:00:05 00:00:38 7.64
flomatmul.c -Ofast float 00:00:06 00:00:07 1.30
flomatmul.c -Ofast -arch=… march=znver3 / mcpu=ampere1 float 00:00:06 00:00:07 1.19
doumatmul.c -O0 double 00:01:14 00:04:22 3.55
doumatmul.c -O3 double 00:00:22 00:01:28 4.05

doumatmul.c -O3 -arch=… march=znver3 / mcpu=ampere1 double 00:00:11 00:01:14 6.84

doumatmul.c -Ofast double 00:00:13 00:00:16 1.28
doumatmul.c -Ofast -arch=… march=znver3 / mcpu=ampere1 double 00:00:10 00:00:15 1.43

Turns out that playing with GCC compiler flags opens a Pandora’s box: there are thousands of options,

and execution time varies wildly depending on them, especially floating point operations (float & double)

We did a quick study to determine the minimal set of flags that

would give a comparable execution times on the two arch.

From what we saw, the arm becomes competitive with the
option -Ofast (i.e., disregard strict standards compliance) !

lower = better

Results (C)
We compared the integrated energy consumption over the job duration for the three machines:

2D graph of total Energy & execution time:

The histograms below include samples from x86 and amd with a different optimization flag (-O3):

overshoot

Arch Threads Benchmark Time (hh:mm:ss) Energy (kW*h) RAM max(Gb) idle (W) Pow. max (W)

x86 (-Ofast) 96 Primes (100M) 02:56:21 0.74488 7.7 84 260

x86 (-Ofast) 96 IntMatMult (50k)2 00:37:44 0.20398 64.3 99 347

x86 (-Ofast) 96 FloatMatMul (50k)2 00:41:04 0.23691 64.3 86 363

x86 (-Ofast) 96 DoubMatMult (50k)2 01:48:29 0.64739 121.2 88 373

x86*2 (-Ofast) 128 Primes (100M) 02:09:56 0.60546 6.6 134 303

x86*2 (-Ofast) 128 IntMatMult (50k)2 00:43:15 0.31687 34.8 134 470

x86*2 (-Ofast) 128 FloatMatMul (50k)2 00:45:36 0.34398 34.8 135 482

x86*2 (-Ofast) 128 DoubMatMult (50k)2 01:29:16 0.68929 63.3 136 492

arm (-Ofast) 80 Primes (100M) 02:36:03 0.41426 7 106 169

arm (-Ofast) 80 IntMatMult (50k)2 00:25:55 0.12782 64 113 331

arm (-Ofast) 80 FloatMatMul (50k)2 00:25:26 0.13543 63.9 116 359

arm (-Ofast) 80 DoubMatMult (50k)2 01:19:18 0.40635 120.1 102 324

bottom left = better

lower = better

Job Profiles (C)
C benchmarks job profiles (CPU, RAM, Power) vs. Time:

Prime Number sieve (1 to 100M) Large matrix multiplication (50k2 float)

arm

x86

x86*2

arm

x86

x86*2

idle

idle

idle

idle

idle

idle

The chosen version of the software: Athena 23.0.3
(builds available for both x86_64 and aarch64 on CVMFS)

ATLAS Workload

$ export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase

$ alias setupATLAS='source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh'

$ setupATLAS

$ asetup Athena,23.0.3

$./TTbarSim2022.sh 1000

Using Athena/23.0.3 [cmake] with platform x86_64-centos7-gcc11-opt at /cvmfs/atlas.cern.ch/repo/sw/software/23.0

Setting up the ATLAS framework on CVMFS and running the job:

arm

x86

Using Athena/23.0.3 [cmake] with platform aarch64-centos7-gcc11-opt at /cvmfs/atlas.cern.ch/repo/sw/software/23.0

#!/bin/sh

export MAXEVENTS=10000
export ATHENA_CORE_NUMBER=$(nproc)
inputdatadir=/cvmfs/atlas.cern.ch/repo/benchmarks/hep-workloads/input-data
inputdata=$inputdatadir/EVNT.13043099._000859.pool.root.1

Sim_tf.py \
--inputEVNTFile="${inputdata}" \
--outputHITSFile="TTbar2022.HITS.pool.root" \
--maxEvents=${MAXEVENTS} \
--physicsList=FTFP_BERT_ATL \
--imf=False \
--randomSeed=6163 \
--AMIConfig=s3873 \
--multithreaded=True \
--jobNumber=1 \

TTbarSim2022.sh

Input file:
Geant4 MT full ATLAS detector

simulation of a given number of TTbar events
(from existing TTbar gen-events file)

We generated samples of 1k and 10k events …

Job Profiles (ATLAS 1k)

idle

arm

x86

x86*2

Results (ATLAS 10k)
We compared execution time and integrated energy consumption over the job duration for the 3 types of

machines available (x86, x86*2 and arm). Each job was executed three times, we took the average

execution time and energy consumption, and their standard deviation as an estimate of the uncertainty.

Arch Threads ATLAS sim. N. events Time (h) dT (%) Energy(kW*h) dE (%) idle(W) max(W) W*h/event

x86 96TTbar 10'000 07:46:14 0.3% 2.8966 0.6% 85 382 0.000290

x86*2 128TTbar 10'000 05:44:25 0.4% 2.5843 0.6% 133 463 0.000258

arm 80TTbar 10'000 05:19:07 2.2% 1.5853 2.5% 110 309 0.000159

The better efficiency of the arm machine compared to both the

x86 can be seen in the Total Energy plot or in the Energy/Event

plot.

lower = better

lower = better

Key result:

the arm is

slightly faster, and

much more energy

efficient than x86 !

HEP-Score
I started interacting with the HEP-Score Task Force earlier this year, because of mutual interest and
partial overlap with my research on power efficiency. In particular:

❖ I wanted to use HEP-Score as a standard HEP workload to rate different architectures on power
efficiency (which is becoming increasingly important for procurement),

❖ I helped testing HEP containers on locally available architectures (x86 & arm),

❖ We discussed the option to include power readings in the standard
output of the HEP-Score suite (peak / idle power & integrated
energy consumption for a given workload).

While the full HEP benchmark suite is not yet available for arm,
an increasing number of experimental workloads are available as
standalone containers

https://gitlab.cern.ch/hep-benchmarks/hep-workloads-sif/container_registry

HEP-Score Containers

$ mkdir –p /tmp/test/results
$ chmod a+rw /tmp/test/
$ singularity run -B /tmp/test:/results oras://registry.cern.ch/hep-workloads/cms-gen-sim-run3-bmk:latest

HEP-Score containers can run on Singularity (or Docker, which we do not use):

(x86) Singularity-CE 3.9.9-1.el7 (previous version 3.8.7-1.el7 disappeared from EPEL and replaced with AppTainer 1.1.0-1.el7)

(arm) singularity version 3.8.4-1.el7 (still available in EPEL)

Example execution of a containerised HEP-Score job:

We used 5 HEP-Score containers from the container_registry (prev. slide):

gitlab-registry.cern.ch/hep-benchmarks/hep-workloads-sif/atlas-sim_mt-ma-bmk:v2.0

gitlab-registry.cern.ch/hep-benchmarks/hep-workloads-sif/atlas-gen_sherpa-ma-bmk:ci-v1.0

gitlab-registry.cern.ch/hep-benchmarks/hep-workloads-sif/cms-reco-run3-ma-bmk:v1.1

gitlab-registry.cern.ch/hep-benchmarks/hep-workloads-sif/cms-digi-run3-ma-bmk:v1.0

gitlab-registry.cern.ch/hep-benchmarks/hep-workloads-sif/cms-gen-sim-run3-ma-bmk:v1.0

Note: the HEP workloads are designed to scale with the number of available threads, therefore power consumption

cannot be directly compared among machines with a different number of cores (/threads), as the machine

with more threads would have done more work …

ATLAS (2x)

CMS (3x)

HEP-Score Results

lower = better

Arch Threads Benchmark Time (hh:mm:ss) Energy (kW*h) Energy # (kW*h) RAM max (Gb) idle (W) max (W) WL-Score WL-Score @ (%) E/WLs (wrt x86)

x86 96atlas-gen_sherpa 00:08:21 0.04576 0.04576 154.8 94 390 113.3959 87.9% 1.0000

x86 96atlas-sim_mt 01:23:49 0.51478 0.51478 54.4 82 383 0.4068 72.1% 1.0000

x86 96cms-gen-sim-run3 00:44:13 0.27235 0.27235 31.3 98 385 3.7347 70.8% 1.0000

x86 96cms-digi-run3 00:12:31 0.07224 0.07224 102.1 88 392 15.0538 68.2% 1.0000

x86 96cms-reco-run3 00:26:53 0.16447 0.16447 119.6 86 389 6.4072 71.0% 1.0000

x86*2 128atlas-gen_sherpa 00:10:11 0.06509 0.04882 207.9 133 488 125.0605 96.9% 1.2897

x86*2 128atlas-sim_mt 01:20:58 0.6109 0.45818 74.0 133 473 0.5639 100.0% 0.8561

x86*2 128cms-gen-sim-run3 00:43:14 0.3319 0.24893 43.2 134 477 5.1025 96.8% 0.8920

x86*2 128cms-digi-run3 00:12:41 0.08937 0.06703 138.2 133 494 22.0662 100.0% 0.8440

x86*2 128cms-reco-run3 00:26:03 0.19734 0.14801 160.9 134 483 9.0284 100.0% 0.8515

arm 80atlas-gen_sherpa 00:06:21 0.02856 0.03427 126.4 108 348 129.0706 100.0% 0.5483

arm 80atlas-sim_mt 00:56:30 0.26156 0.31387 64.1 104 310 0.5486 97.3% 0.3767

arm 80cms-gen-sim-run3 00:26:44 0.12691 0.15229 148.8 116 306 5.2721 100.0% 0.3301

arm 80cms-digi-run3 00:09:01 0.04008 0.04810 183.9 104 318 18.7561 85.0% 0.4453

arm 80cms-reco-run3 00:20:34 0.09574 0.11489 238.0 102 310 7.4504 82.5% 0.5006
scaled to x86 (= 96 threads)

bottom right = better (probably)

Here the cumulative results of the 5 HEP-Score containers on the 3 machines (x86, x86*2 and arm):

@ renormalised (highest = 100%)

Energy usage per WL-Score (w.r.t. x86)

HEP-Score Summary
In conclusion, we compared an arm and x86 processor of very similar specs and almost identical cost.

We found that on average, the arm processor ran ~20% quicker and used ~35% less power per HEP

task than the equivalent x86 *

Note:

while the HEP-Score geometric average is not yet available (as we did run

standalone containers outside the HEP Benchmarking suite), we have been

struggling to find an intuitive way to compare data …

* averages renormalized to the same amount of work

❖ Despite the active development within all LHC experiments, support for architectures other than x86 is
patchy, at best ...

❖ Same is true for hardware suppliers, at least in our experience: our DELL supplier does not sell any
arm server (yet). We ordered it from a small local supplier and it took over 2 months to arrive …

❖ The arm machine seem to score better in speed and energy efficiency, but we never really looked
under the hood: ATLAS physics output was not validated, matrix elements were not checked one by
one. So … before committing to a new architecture, we must make sure that results are valid!

❖ We trust enough our IPMI power readings (± 5%), but for more precise measurement we may want a
more precise comparison (e.g., by using a metered PDU with remote power readings on each plug)

❖ There was no error propagation. We just took the 5% error on IPMI reading as the major source …

❖ All results presented here were prepared in about 1 month (due to the delay in the arm server delivery)
… so, they might not be perfect (yet). Stay tuned for the next iteration of this study!

Open Issues

❖ This study addressed almost all the limitation that affected of our previous one on power efficiency
(ref. GridPP47), as the benchmark were now performed on two almost identical servers installed
locally in a closely controlled environment.

❖ In almost all categories, we see that for the same price arm architecture gives better
performance in term of speed and power efficiency.
We also see that our arm server has a higher energy consumption in its idle state than its x86
counterpart, which makes I/O bound operations slightly less power efficient.

❖ We wish to continue this study by performing a better estimate of all sources of errors, and by
doing some sort of validation of the jobs output - to guarantee that the better performance does
not come at the cost of a lower accuracy.

❖ We also wish to extend our set of benchmark to GPUs. We already have some hardware available
and we are working in close contact with the HEP-Score task force (see yesterday’s HEP talk by
Domenico). This collaboration is likely to continue …

Summary & Outlook

Thanks.

Dr. Emanuele Simili ACAT 2022 25 Otober 2022

Local power readings and resource usage is extracted by node_exporter
(which can be customized with any metric).

Visualization (local)

WorkerNode View

Data is colourfully visualised in

a custom Grafana dashboard,

and can be exported to CSV

format via the Prometheus API

and analysed in ROOT

TimeStamp: date +"%F , %T"
CPU: top -bn1 | grep "Cpu(s)" | sed "s/.*, *\([0-9.]*\)%* id.*/\1/" | awk '{print 100 - $1}'
RAM: free -t | awk 'FNR == 2 {printf("%.2f"), $3/$2*100}'
GPU: nvidia-smi --query-gpu=power.draw --format=csv,noheader,nounits | awk '{s+=$1} END {print s}’
Power (IPMI): ipmitool dcmi power reading | grep "Instantaneous power reading:"

Exporter Script

Results (BASH sieve)

Arch Threads Time (h) Time(s) Energy(kW*h) CPUmin(%) CPUmax(%) RAMmin(Gb) RAMmax(Gb) idle(W) max(W)

x86 96 00:11:20 680 0.0458 0.1 89.8 3.6 4.2 92 313

x86*2 128 00:07:10 430 0.0238 0.1 80.6 3.4 7.4 100 241

arm 80 00:11:10 670 0.0608 0.2 62.1 3.4 3.8 132 385

Erathostenes’ prime numbers sieve implemented in BASH (thx RosettaCode), with added ad-hoc

multithreading …

BASH sieve

arm

x86

x86*2

Prime Number sieve (1 to 100M) using compiled C code with OMP (gcc version 4.8.5
20150623)
IPMI sampling interval = 1sec , 10sec,
30sec

Sampling Frequency

Job Sampling threads Time (s) Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W)

x86 1s 96 10982 03:03:02 1.162 402.0 90.9

10s 96 11002 03:03:22 1.183 402.0 84.0

30s 96 11017 03:03:37 1.154 391.0 85.5

arm 1s 80 8259 02:17:39 0.465 215.0 103.9

10s 80 8229 02:17:09 0.483 215.0 104.5

30s 80 8229 02:17:09 0.485 220.0 100.5

dE (x86) 0.0123 1.1%

dE (arm) 0.0087 1.8%

Check that the sampling frequency we chose does not affect the integrated Energy consumption
(the effect is less than 2%).

Idle Job (1h) with/without exporters (node_exporter, PromTail, Pakiti, cron)

IPMI sampling interval = 10sec

Job Exporters threads Time (s) Time (h) Tot. Energy (kW*h)Peak Power (W)Idle (W)

AMD AMD (allOn) 96 3600 01:00:00 0.083 122.0 81.8

AMD (allOff) 96 3600 01:00:00 0.080 137.0 76.3

ARM ARM (allOn) 80 3600 01:00:00 0.107 125.0 103.8

ARM (allOff) 80 3600 01:00:00 0.107 120.0 105.2

Exporters Effect
Check that the active exporters (node_exporter, PromTail, Pakiti) do not add extra power consumption.
(the effect seems to be about 2% … but it would be better to gather more samples)

Arch Threads Benchmark N. events Time (h) dT (%) Energy(kW*h) dE (%) idle(W) max(W) W*h/event

x86 96TTbar 1k 1'000 00:55:42 3.0% 0.3105 1.2% 83 380 0.000310

x86 96TTbar 10k 10'000 07:46:14 0.3% 2.8966 0.6% 85 382 0.000290

x86*2 128TTbar 1k 1'000 00:42:44 0.8% 0.2814 0.6% 132 463 0.000281

x86*2 128TTbar 10k 10'000 05:44:25 0.4% 2.5843 0.6% 133 463 0.000258

arm 80TTbar 1k 1'000 00:41:23 3.4% 0.1749 3.2% 101 308 0.000175

arm 80TTbar 10k 10'000 05:19:07 2.2% 1.5853 2.5% 110 309 0.000159

ATLAS stuff

