
Precision Cascade:

J. Gonzalez, J. Lauret (PIs)
G. Van Buren, M. Burtscher,

I.A. Cali, Ph. Canal, R. Nunez, Y. Ying

A novel algorithm for multi-precision
extreme compression

ACAT 2022, Bari, Italy

1

Compression Algorithms

● Lossy compression algorithms are used in

image/sound processing
○ Why not physics?

● Accelogic - theory of “Compressive

Computing”
○ Offering stunning lossy and lossless algorithms

● Concept: not a true “loss” to remove bits that

carry insignificant or zero information

2

Extracted
branches

Compression Algorithms

3

Dataset Apply
compression

(BLAST)

Assess results

Compression Results

● Previous outside-of-ROOT results surpassing

current ROOT algorithms

● Prior results outperform gzip by 2-4x

● Concerns over too much precision irretrievably lost

4

Comp: Low (48) Mid (53) Mid (54) High

(57)

gzip float16

pT 4.25 6.24 6.88 9.95 1.97 2

eta 3.75 5.27 5.75 7.86 1.95 2

phi 4.15 6.04 6.65 9.54 2.02 2

mass 14.95 17.25 18.12 22.02 3.69 2

Overall 6.13 8.32 8.98 11.81 2.95 2.63

Compression Ratios

CMS

(Overall

includes

lossless int

compression)

Compression Results

● Previous inside-of-ROOT results surpassing

current ROOT algorithms

● Prior results outperform gzip by 2-4x

● Concerns over too much precision irretrievably

lost

5

Compression: Low (43) Mid (51) ROOT default

px_primary 2.68 5.14 1.83

px_secondary 1.44 2.95 1.07

x 1.12 1.88 1.05

z 1.95 1.60 1.10

STAR Compression Ratios

STAR

Can we store tiers of precision
without being repetitive?

6

…
2.71934
5.30711
1.16232
2.93005
0.07698

…

7

2 . 7 1 9 3 4

5 . 3 0 7 1 1

1 . 1 6 2 3 2

2 . 9 3 0 0 5

0 . 0 7 6 9 8

8

2 . 7 1 9 3 4

5 . 3 0 7 1 1

1 . 1 6 2 3 2

2 . 9 3 0 0 5

0 . 0 7 6 1 3

9

Can we store tiers of precision
without being repetitive?

10

Can we store tiers of precision
without being repetitive?

11

Can we store tiers of precision
without being repetitive?

YES.

12

Introducing Precision Cascade

● Enables higher precision to be stored separately

without duplicating information

● User can define levels of precision
○ Varying levels of precision can be retrieved

Compression level 43
(low comp)

Compression level 51
(mid comp)

Original dataset

13

Most
compressive

Least
compressive

51
43

Original

Testing Precision Cascade in ROOT

● Tested inside-of-ROOT on subset of CMS-like and STAR data

● Compared against inside-of-ROOT BLAST and default ROOT algorithm

● Assessing:

14

compression speed

decompression speed
compression ratio

Compression Ratio Results

15

CMS STAR

Compression Speed Results

16

CMS STAR

Decompression Speed Results

17

CMS STAR

Leveraging Precision Cascade

18

Live storage $$$$ Archival storage $

Analysis A
Analysis B
Analysis E

Analysis C

Analysis D

Benefits of Precision Cascade
● Allows storing highly compressed data in fast access storage, rest in

archival storage
● Certain analysis require fewer statistics but more precision
● Later on, can rebuild original dataset again, if necessary

Integration in ROOT

● BLAST can be applied to all branches containing homogeneous numerical

types (e.g. split branches)
○ BLAST is lossy for floating point branches and lossless for integer branches

○ Double32_t and Float16_t which are already lossy are not supported by BLAST

● Precision Cascade is supported only for double and float

19

std::vector<Int_t> levels = { 51, 43 };
ROOT::PrecisionCascadeCompressionConfig targetConfig(

ROOT::RCompressionSetting::EAlgorithm::kBLAST,
levels,
true /* Keep also the residual file */);

…
lossy_branch->SetCompressionSettings(targetConfig);

Integration in ROOT

● Precision Cascade naming scheme
○ The additional files are named with their

cascade tier (the suffix is customizable)

■ ${original_filename}_precisioncascade

_[1,2,3,etc.].root

● The cascade files are automatically

used if present
○ For example immediately after writing,

reading back would be done with full

precision

20

original_file.root

original_file.root_precisioncascade_1.root

original_file.root_precisioncascade_2.root

Output Folder

Integration in ROOT

● Precision Cascade naming scheme
○ The additional files are named with their

cascade tier (the suffix is customizable)

■ ${original_filename}_precisioncascade

_[1,2,3,etc.].root

● The cascade files are automatically

used if present
○ For example immediately after writing,

reading back would be done with full

precision

21

original_file.root

original_file.root_precisioncascade_1.root

Output Folder

Compression Level 43

● No valid source-code license yet
○ License would grant free unlimited permission for ROOT to use and integrate the codes for

non-profit / academic communities (i.e. redistribute sources as part of ROOT releases)

● In the interim, binary library distribution are available for early adopter

Open Issues

22

● BLAST demonstrates outperformance of ROOT

compression in many cases, allowing good enough

precision for certain analyses

● Key finding: Precision Cascade allows user to save

“lost” bits in separate file
○ Builds end-user’s ease and confidence in using lossy

compression algorithms

● We are hoping to release these compression

algorithms in ROOT soon to the community, stay

tuned!

In Conclusion

23
This work was supported by the U.S. Department of Energy, SBIR/STRR Program
of the Office of science, Nuclear Physics under Award Number DE-SC0018521

Thank you!

24

This work was supported by the U.S. Department of Energy,
SBIR/STRR Program of the Office of science, Nuclear Physics under

Award Number DE-SC0018521

Backup Slides

25

Error of Compression Levels (Stacked)

N

N

|orig - zig| |orig - zig| |orig - zig|

X-axis:
[0, 1e-3]

X-axis:
[0, 1e-5]

Comp. Level 51 Comp. Level 43 With remainder

26

Error of Compression Levels (Unstacked)

N

N

|orig - zig| |orig - zig| |orig - zig|

X-axis:
[0, 1e-3]

X-axis:
[0, 1e-5]

Comp. Level 51 Comp. Level 43 With remainder

27

Error of Compression Levels (Unstacked)

N

X-axis:
[0, 1e-3]

Comp. Level 51

|orig - zig|
28

Compression Ratio - Additional Baselines

29

Compression Speed - Additional Baselines

30

Decompression Speed - Additional Baselines

31

Precision Cascade Data Types

● Lossy compression
○ Float

○ Double

● Lossless compression
○ Int

○ UInt

○ Long

○ etc

32

Edge Cases Considered

● We have tested the following edge cases:
○ Applying ZIG to a tree of only integers - should mention that ZIG should not be used for this,

but it should still work (and that the auxiliary files are unnecessary for reading the integers)

○ Total size vs. number of tiers

○ Total size vs. buffer sizes (note that ROOT automatically determines buffer sizes unless

overridden)

33

