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Compression Algorithms

● Lossy compression algorithms are used in 

image/sound processing
○ Why not physics?

● Accelogic - theory of “Compressive 

Computing”
○ Offering stunning lossy and lossless algorithms

● Concept: not a true “loss” to remove bits that 

carry insignificant or zero information
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Compression Results

● Previous outside-of-ROOT results surpassing 

current ROOT algorithms

● Prior results outperform gzip by 2-4x

● Concerns over too much precision irretrievably lost

4

Comp: Low (48) Mid (53) Mid (54) High 

(57)

gzip float16

pT 4.25 6.24 6.88 9.95 1.97 2

eta 3.75 5.27 5.75 7.86 1.95 2

phi 4.15 6.04 6.65 9.54 2.02 2

mass 14.95 17.25 18.12 22.02 3.69 2

Overall 6.13 8.32 8.98 11.81 2.95 2.63

Compression Ratios

CMS

(Overall 

includes 

lossless int 

compression)



Compression Results

● Previous inside-of-ROOT results surpassing 

current ROOT algorithms

● Prior results outperform gzip by 2-4x

● Concerns over too much precision irretrievably 

lost
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Compression: Low (43) Mid (51) ROOT default

px_primary 2.68 5.14 1.83

px_secondary 1.44 2.95 1.07

x 1.12 1.88 1.05

z 1.95 1.60 1.10

STAR Compression Ratios

STAR



Can we store tiers of precision
without being repetitive?
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Can we store tiers of precision
without being repetitive?
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Can we store tiers of precision
without being repetitive?
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Can we store tiers of precision
without being repetitive?

YES.
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Introducing Precision Cascade

● Enables higher precision to be stored separately 

without duplicating information

● User can define levels of precision
○ Varying levels of precision can be retrieved

Compression level 43
(low comp)

Compression level 51 
(mid comp)

Original dataset
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Testing Precision Cascade in ROOT

● Tested inside-of-ROOT on subset of CMS-like and STAR data

● Compared against inside-of-ROOT BLAST and default ROOT algorithm

● Assessing:
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compression speed

decompression speed
compression ratio



Compression Ratio Results
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Compression Speed Results
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CMS STAR



Decompression Speed Results
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Leveraging Precision Cascade
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Live storage $$$$ Archival storage $

Analysis A
Analysis B
Analysis E

Analysis C

Analysis D

Benefits of Precision Cascade
● Allows storing highly compressed data in fast access storage, rest in 

archival storage
● Certain analysis require fewer statistics but more precision
● Later on, can rebuild original dataset again, if necessary



Integration in ROOT

● BLAST can be applied to all branches containing homogeneous numerical 

types (e.g. split branches)
○ BLAST is lossy for floating point branches and lossless for integer branches

○ Double32_t and Float16_t which are already lossy are not supported by BLAST

● Precision Cascade is supported only for double and float
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std::vector<Int_t> levels = { 51, 43 };
ROOT::PrecisionCascadeCompressionConfig targetConfig( 

ROOT::RCompressionSetting::EAlgorithm::kBLAST, 
levels, 
true /* Keep also the residual file */ );

…
lossy_branch->SetCompressionSettings(targetConfig);



Integration in ROOT

● Precision Cascade naming scheme
○ The additional files are named with their 

cascade tier (the suffix is customizable)

■ ${original_filename}_precisioncascade

_[1,2,3,etc.].root

● The cascade files are automatically 

used if present
○ For example immediately after writing, 

reading back would be done with full 

precision
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original_file.root

original_file.root_precisioncascade_1.root

original_file.root_precisioncascade_2.root

Output Folder
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● Precision Cascade naming scheme
○ The additional files are named with their 
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original_file.root

original_file.root_precisioncascade_1.root

Output Folder

Compression Level 43



● No valid source-code license yet
○ License would grant free unlimited permission for ROOT to use and integrate the codes for 

non-profit / academic communities  (i.e. redistribute sources as part of ROOT releases)

● In the interim, binary library distribution are available for early adopter

Open Issues

22



● BLAST demonstrates outperformance of ROOT 

compression in many cases, allowing good enough 

precision for certain analyses

● Key finding: Precision Cascade allows user to save 

“lost” bits in separate file
○ Builds end-user’s ease and confidence in using lossy 

compression algorithms

● We are hoping to release these compression 

algorithms in ROOT soon to the community, stay 

tuned!

In Conclusion
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Thank you!
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Backup Slides
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Error of Compression Levels (Stacked)
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Error of Compression Levels (Unstacked)
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Error of Compression Levels (Unstacked)
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Compression Ratio - Additional Baselines
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Compression Speed - Additional Baselines
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Decompression Speed - Additional Baselines
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Precision Cascade Data Types

● Lossy compression
○ Float

○ Double

● Lossless compression
○ Int

○ UInt

○ Long

○ etc
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Edge Cases Considered

● We have tested the following edge cases:
○ Applying ZIG to a tree of only integers - should mention that ZIG should not be used for this, 

but it should still work (and that the auxiliary files are unnecessary for reading the integers)

○ Total size vs. number of tiers

○ Total size vs. buffer sizes (note that ROOT automatically determines buffer sizes unless 

overridden)

33


